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Abstract. We classify the completely integrable systems associated with clas-
sical root systems whose potential functions are meromorphic at an infinite

point.

1. Introduction

A Schrödinger operator

(1.1) P =
n∑

j=1

∂2

∂x2
j

+ R(x)

with the potential function R(x) of n variables x = (x1, . . . , xn) is called completely
integrable if there exist n differential operators P1, . . . , Pn such that

(1.2)


[Pi, Pj ] = 0 (1 ≤ i < j ≤ n),
P ∈ C[P1, . . . , Pn],
P1, . . . , Pn are algebraically independent.

In this note P is called to be completely integrable of type Bn or of classical type
if Pk and R(x) in the above are of the forms

Pk =
n∑

j=1

∂2k

∂x2k
j

+ Qk with ordQk < ordPk,(1.3)

R(x) =
∑

1≤i<j≤n

(
u−

ij(xi − xj) + u+
ij(xi + xj)

)
+

n∑
k=1

vk(xk).(1.4)

Here u±
ij and vk are functions of one variable.

The systems of differential operators satisfied by the radial parts of zonal spher-
ical functions or Whittaker functions on Riemannian symmetric spaces of the non-
compact and classical type, Heckman-Opdam’s hypergeometric equations (cf. [HO]),
Calogero-Moser and Sutherland systems for one dimensional quantum n-body prob-
lems (cf. [OP1], [OP2]) and Toda finite chains associated with (extended) classical
Dynkin diagrams are their examples.

We remark that [Wa] proves that if the potential function R(x) is locally defined
and analytic, then the condition (1.2) with (1.3) assures (1.4) and moreover R(x)
is extended to a global meromorphic function on Cn except for a trivial case corre-
sponding to Type A1 in Theorem 4.8 (cf. [Oc] for type B2 and [OS] in the invariant
case).

In [OOS], [OS], [O2] and [OO] this integrable system was determined under the
condition that P is Bn-invariant, namely, u+

ij , u−
ij and vk are even functions and

do not depend on i, j and k and u+
ij = u−

ij . On the other hand [Oc], [Ta] and [Wa]
determine it if R(x) has certain singularities.
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We assume in this note that R(x) is meromorphic at t = 0 under the coordinate
system

(1.5) tj = e−(xj−xj+1) (j = 1, . . . , n − 1), tn = e−xn

and classify the Schrödinger operator (1.1) which allows a differential operator P2 of
the form (1.3) satisfying PP2 = P2P . We note that the above examples with non-
rational potential functions satisfy this assumption. In the first example this follows
from the fact that the invariant differential operators on a Riemannian symmetric
space have analytic extensions on a smooth compactification of the space (cf. [O1]).

We determine R(x) by Theorem 4.8 and Remark 4.7 in §4. This theorem is the
main result of this note and proved by using §2 and §3. The result implies that
the system is the invariant quantum integrable system classified by [OOS] or its
suitable limit (cf. [I], [IM], [Ku], [KT], [Ru], [vD] and [vD2]). Moreover it is shown
in [O3] that the integrals P1, . . . , Pn are those given in [O2] or their suitable limits.

If R(x) is analytic at t = 0, we say that R(x) has regular singularity at the
infinite point t = 0. Such potiential functions are also classified in Corollary 4.10.

In §3 the potential function R(x) is determined when n = 2.
In §2 we study the potential function R(x) when u+

ij = vk = 0, which we call to
be of type An−1.

2. Type An−1 (n ≥ 3)

In this section we study the Schrödinger operator

(2.1) P =
n∑

j=1

∂2

∂x2
j

+
∑

1≤i<j≤n

ũij(xi − xj)

which allows a differential operator

(2.2) Q =
∑

1≤i<i<k≤n

∂3

∂xi∂xj∂xk
+ S with ordS < 3

satisfying [P,Q] = [
∑n

j=1
∂

∂xj
, Q] = 0. Then the proof of [OOS, Proposition 4.2]

implies that the existence of Q is equivalent to

(2.3)
∑

1≤i<j<k≤n

Uijk = 0

with

Uijk = ujk(tj · · · tk−1)
(
ti · · · tj−1u

′
ij(ti · · · tj−1) + ti · · · tk−1u

′
ik(ti · · · tk−1)

)
+ uik(ti · · · tk−1)

(
−ti · · · tj−1u

′
ij(ti · · · tj−1) + tj · · · tk−1u

′
jk(tj · · · tk−1)

)
− uij(ti · · · tj−1)

(
ti · · · tk−1u

′
ik(ti · · · tk−1) + tj · · · tk−1u

′
jk(tj · · · tk−1)

)

(2.4)

by putting uij(e−y) = ũij(y). We assume that R(x) is holomorphic for 0 < |t| ¿ 1
under the coordinate system (1.5) which corresponds to the expression

(2.5) uij(s) =
∑
ν∈Z

cij
ν sν (cij

0 = 0) converge for 0 < |s| ¿ 1.

We assume cij
0 = 0 without loss of generality and expand (2.3) into the power series.

Then the terms (ti · · · tj−1)p(tj · · · tk−1)q with p 6= 0, q 6= 0, p 6= q and i < j < k
appear only in Uijk and therefore if p 6= 0, q 6= 0 and p 6= q, we have

cjk
q pcij

p + cjk
q−ppcik

p − cik
q (p − q)cij

p−q + cik
p (q − p)cjk

q−p − cij
p−qqc

ik
q − cij

p qcjk
q = 0
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and hence
(p − q)cij

p cjk
q − pcij

p−qc
ik
q + qcjk

q−pc
ik
p = 0.

Denoting

(2.6) Uij(t) =
∑

ν∈Z\{0}

Cij
ν tν with cij

ν = νCij
ν ,

we have

uij(t) = tU ′
ij(t),(2.7)

pq(p − q)
(
Cij

p Cjk
q − Cij

p−qC
ik
q − Cjk

q−pC
ik
p

)
= 0.(2.8)

Then (2.3) is equivalent to

(2.9)
(
Uij(s) + Ujk(t) − Uik(st)

)2 = V ijk
ij (s) + V ijk

jk (t) − V ijk
ik (st)

with suitable functions V ijk
ij , V ijk

jk and V ijk
ik for 1 ≤ i < j < k ≤ n.

Remark 2.1. If
(
Uij(t), Ujk(t), Uik(t)

)
satisfies (2.9) with suitable Vij , Vjk and Vij ,

then
(
Ujk(t), Uij(t), Uik(t)

)
and

(
cUij(atr), cUjk(btr), cUik(abtr)

)
have the same

property for any complex numbers a, b and c and a positive integer r with ab 6= 0.

Proposition 2.2. The solution (Uij , Ujk, Uik) of (2.9) with (2.6) is one of the
followings and it satisfies Uijk = 0.

i) Two of {Uij , Ujk, Uik} are zero and the other one is any function.
ii) (Uij , Ujk, Uik) = (atr, btr, ct−r) for any a, b and c ∈ C and r ∈ Z \ {0}.

iii) (Uij , Ujk, Uik) =
( actr

1 − atr
,

bctr

1 − btr
,

abctr

1 − abtr
)
with any non-zero complex num-

bers a, b and c and a positive integer r.

Proof. All the solutions of the equation (2.9) are obtained by [BP] and [BB] (cf. [OO,
Remark 2.3]), which implies this proposition. But we will give a simple proof under
the assumption that the origin is at most a pole of Uij , Ujk and Uik.

Suppose one of Uij , Ujk, Uik is zero and the other two are not zero. If Uij = 0
and Cjk

r 6= 0, then we have p(m+p)mCjk
m Cik

p = 0 and therefore Cik
p = 0 for p 6= −r,

Cik
−r 6= 0 and Cjk

m = 0 for m 6= r. Thus we have ii). We similarly have ii) in the
other two cases.

Hence we may assume that any one of {Uij , Ujk, Uik} is not zero. Define I`m ∈
Z \ {0} such that C`m

I`m
6= 0 and C`m

ν = 0 for ν < I`m. Then (2.8) shows

(2.10) IijIjk(Iij − Ijk)(Cij
Iij

Cjk
Ijk

− Cij
Iij−Ijk

Cik
Ijk

− Cjk
Ijk−Iij

Cik
Iik

) = 0.

Suppose Iij > 0 and Ijk > 0. Then (2.10) means Iij = Ijk, which we put r, and
therefore (2.8) with q = r and that with p = q + r mean

pr(p − r)(Cij
p Cjk

r − Cij
p−rC

ik
r ) = 0 for p > 0,(2.11)

(q + r)qr(Cij
q+rC

jk
q − Cij

r Cik
q ) = 0,(2.12)

respectively.
If Cik

r = 0, it follows from (2.11) that Cij
p = 0 for p 6= r by the induction on p

and we have similarly Cjk
q = 0 for q 6= r by the symmetry between U ij and U jk

and finally Cik
q = 0 for q 6= −r by (2.12). Hence this case is reduced to ii) with

r > 0.
Suppose Cik

r 6= 0. Then by Remark 2.1 we may assume Cij
r = Cjk

r = Cik
r

by a suitable transformation (s, t) 7→ (at, bt) and moreover by (2.11) that Uij =
c
∑∞

ν=1 trν and similarly Ujk = c′
∑∞

ν=1 trν . Then (2.12) means Uik = Ujk + c′′t−r.
Finally we have c′′ = 0 by (2.10) with p = 2r and q = −r and get Uij = Ujk = Uik.
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Lastly we may assume Iij < 0 by Remark 2.1. Then (2.8) with p = Iij + Iik

and q = Iik implies Iik > 0 and that with p = Iij and q > 0 means Cjk
q = 0

for q ≥ 0. Hence Ijk < 0 and similarly we have Cij
p = 0 for p ≥ 0. More-

over (2.8) with p = q + Iij shows Cik
q = 0 for sufficiently large integer q. Then(

Uij(t−1), Ujk(t−1), Uik(t−1)
)

is also a solution of (2.9) and this case is reduced to
the case when Iij > 0 and Ijk > 0 and therefore we have ii) with r < 0.

Note that it is easy to see that the given functions in the proposition satisfy
Uijk = 0 (cf. Remark 2.1). ¤

Remark 2.3. If t = e−x, then

t
d

dt

(
atr

)
= artr = are−rx,

t
d

dt

( atr

1 − atr

)
=

artr

(1 − atr)2
= r sinh−2 rx − log a

2
.

3. Type B2

In this section we study the following commuting differential operators.

(3.1)


P =

∂2

∂x2
+

∂2

∂y2
+ R(x, y),

Q =
∂4

∂x2∂y2
+ S with ordS < 4,

[P,Q] = 0.

Note that P2 = P 2 − 2Q in (1.3). First we review the arguments given in [OO]
and [Oc]. Since P is self-adjoint, we may assume Q is also self-adjoint by replacing
Q by its self-adjoint part if necessary. Here for A =

∑
aij(x, y) ∂i+j

∂xi∂yj we define
tA =

∑
(−1)i+j ∂i+j

∂xi∂yj aij(x, y) and A is called self-adjoint if tA = A. Then

R(x, y) = u+(x + y) + u−(x − y) + v(x) + w(y),

Q =
(

∂2

∂x∂y
+

u+(x + y) − u−(x − y)
2

)2

+ w(y)
∂2

∂x2
+ v(x)

∂2

∂y2

+ v(x)w(y) + T (x, y),

(3.2)

and the function T (x, y) satisfies

2
∂T (x, y)

∂x
=

(
u+(x + y) − u−(x − y)

)∂w(y)
∂y

+ 2w(y)
∂

∂y

(
u+(x + y) − u−(x − y)

)
,

2
∂T (x, y)

∂y
=

(
u+(x + y) − u−(x − y)

)∂v(x)
∂x

+ 2v(x)
∂

∂x

(
u+(x + y) − u−(x − y)

)
.

(3.3)

Conversely , if a function T (x, y) satisfies (3.3) for suitable functions u±(t), v(t)
and w(t), then (3.1) is valid for R(x, y) and Q defined by (3.2).

We have the compatibility condition
(3.4)

∂

∂x

((
u+(x + y) − u−(x − y)

)∂v(x)
∂x

+ 2v(x)
∂

∂x

(
u+(x + y) − u−(x − y)

))
=

∂

∂y

((
u+(x + y) − u−(x − y)

)∂w(y)
∂y

+ 2w(y)
∂

∂y

(
u+(x + y) − u−(x − y)

))
for the existence of T (x, y).
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Definition 3.1 (Duality in B2). Under the coordinate transformation

(3.5) (x, y) 7→
(

x + y√
2

,
x − y√

2

)
the pair (P, 1

4P 2−Q) also satisfies (3.1), which we call the duality of the commuting
differential operators of type B2.

Denoting ∂x = ∂
∂x , ∂y = ∂

∂y and put

L = P 2−4Q−(∂2
x−∂2

y +v(x)−w(y))2−2u−(x−y)(∂x+∂y)2−2u+(x+y)(∂x−∂y)2.

Then the order of L is at most 2 and the second order term of L equals

2(u+ + u− + v + w)(∂2
x + ∂2

y) − 4(u+ − u−)∂x∂y − 4w∂2
x − 4v∂2

y

− 2(v − w)(∂2
x − ∂2

y) − 2u−(∂x + ∂y)2 − 2u+(∂x − ∂y)2 = 0.

Since L is self-adjoint, L is of order at most 0 and the 0-th order term of L equals

(∂2
x + ∂2

y)(u+ + u− + v + w) + (u+ + u− + v + w)2 − 4(vw + T )− 2∂x∂y(u+ − u−)

− (∂2
x − ∂2

y)(v − w) = (u+ + u− + v + w)2 − 4(vw + T )

and therefore we have the following proposition.

Proposition 3.2. i) By the duality in Definition 3.1 the pair
(
R(x, y), T (x, y)

)
changes into

(
R̃(x, y), T̃ (x, y)

)
with

R̃(x, y) = v
(x + y√

2

)
+w

(x − y√
2

)
+ u+

(√
2x

)
+ u−(√

2y
)
,

T̃ (x, y) =
1
4
R̃(x, y)2 − v

(x + y√
2

)
w

(x − y√
2

)
− T

(x + y√
2

,
x − y√

2

)
.

(3.6)

ii) Combining the duality with the scaling map R(x, y) 7→ c−2R(cx, cy), the fol-
lowing pair

(
Rd(x, y), T d(x, y)

)
defines commuting differential operators if so is(

R(x, y), T (x, y)
)
. This Rd(x, y) is also called the dual of R(x, y).{

Rd(x, y) = v(x + y) + w(x − y) + u+(2x) + u−(2y),
T d(x, y) = 1

4Rd(x, y)2 − v(x + y)w(x − y) − T (x + y, x − y).
(3.7)

Now we give a list of the solutions of (3.4) and (3.3). They are suitable limits
of the invariant solutions studied in [OO] and many of them are given in [Oc].

Case I: (Any-A1)+(Any-A1) v = w = 0 and u and v are arbitrary functions.
Case II: u+ = u−, v = w and (u+; v) is in the following list.

(〈sinh−2 λt〉; 〈sinh−2 2λt, sinh−2 λt, cosh 2λt, cosh 4λt〉),(Trig-B2)

(〈sinh−2 λt, sinh−2 2λ〉; 〈sinh−2 2λt, cosh 4λt〉).(Trig-B2-S)

Case III: u+ = u−, (u+; v, w) is in the following list.

(〈cosh 2λt〉; 〈sinh−2 λt, sinh−2 2λt〉, 〈sinh−2 λt, sinh−2 2λt〉),(Toda-D(1)
2 -bry)

(〈cosh λt, cosh 2λt〉; 〈sinh−2 λt〉, 〈sinh−2 λt〉),(Toda-D(1)
2 -S-bry)

(〈e−2λt〉; 〈e2λt, e4λt〉, 〈sinh−2 λt, sinh−2 2λt〉),(Toda-B(1)
2 -bry)

(〈e−λt, e−2λt〉; 〈e2λt〉, 〈sinh−2 λt〉).(Toda-B(1)
2 -S-bry)

Case IV: v = w, (u+, u−; v) is in the following list.

(0, 〈sinh−2 λt〉; 〈e−2λt, e−4λt, e2λt, e4λt〉),(Trig-A1-bry)

(0, 〈sinh−2 λt, sinh−2 2λt〉; 〈e−4λt, e4λt〉).(Trig-A1-S-bry)
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Case V: (u+, u−, v, w) is in the following list.

(0, 〈e−λt〉, 〈eλt, e2λt〉, 〈e−λt, e−2λt〉),(Toda-C(1)
2 )

(0, 〈e−λt, e−2λt〉, 〈e2λt〉, 〈e−2λt〉).(Toda-C(1)
2 -S)

In the above 〈 〉 means an arbitrary linear combination of given functions and, for
example, (Trig-B2) implies{

u+(t) = u−(t) = C0 sinh−2 λt,

v(t) = w(t) = C1 sinh−2 2λt + C2 sinh−2 λt + C3 cosh 2λt + C4 cosh 4λt

with any complex numbers C0, C1, . . . , C4 and a suitable λ ∈ C \ {0}.
According to our assumption, put

(3.8)

t = e−y, s = e−x+y,

u+(x + y) =
∑
i≥r

u+
i sit2i, u−(x − y) =

∑
i≥r

u−
i si,

v(x) =
∑
j≥r′

vjs
jtj , w(y) =

∑
j≥r′′

wjt
j ,

u±
i = vj = wk = 0 if i < r, j < r′ and k < r′′.

(3.9)

∑
i≥r
j≥r′

(i + j)(2i + j)vj(u+
i t2i+j − u−

i tj)si+j

=
∑
i≥r

j≥r′′

(
(2i + j)(i + j)wju

+
i t2i+j − (2i − j)(i − j)wju

−
i tj

)
si

and the coefficients of sptq mean

(3.10) pqv2p−qu
+
q−p − p(2p − q)vqu

−
p−q = q(q − p)wq−2pu

+
p − (2p − q)(p − q)wqu

−
p .

Putting

(3.11)

{
U±(t) =

∑
i≥r U±

i ti, V (t) =
∑

j≥r′ Vjt
j and W (t) =

∑
k≥r′′ Wktk,

u±(t) = t(U±)′(t) + u±
0 , v(t) = tV ′(t) + v0 and w(t) = tW ′(t) + w0,

we have

(3.12) pq(2p − q)(p − q)
(
V2p−qU

+
q−p + VqU

−
p−q + Wq−2pU

+
p − WqU

−
p

)
= 0,

which is equivalent to

(3.13) V (st)
(
U+(st2) + U−(s)

)
+ W (t)

(
U+(st2) − U−(s)

)
= F1(st2) + F2(s) + G1(st) + G2(t)

with suitable functions F1, F2, G1 and G2 (cf. [Oc, Proposition 2.4]). Thus we have
the following proposition.

Proposition 3.3. For the functions (U±, V,W, F1, F2, G1, G2) satisfying (3.13) we
have the commuting differential operators (3.1) and (3.2) by putting

(3.14)


u±(t) = ∂tU

±(et) + C ′, v(t) = ∂tV (et) + C, w(t) = ∂tW (et) + C,

T (x, y) =
1
2

(
∂2

x − ∂2
y

)(
V (ex)

(
U+(ex+y) + U−(ex−y)

)
− G1(ex)

)
+C

(
u+(x + y) + u−(x − y)

)
,

C, C ′ ∈ C.
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Now we put

(3.15)
S(B2) =

{(
U+(t), U−(t), V (t),W (t)

)
; U±, V and W are meromorphic

in a neighborhood of 0 and they satisfy (3.13)
}
.

Remark 3.4. i) Since the constant terms U±
0 , V0 and W0 have no effect on the

equation (3.12) and on the original functions u±, v and w, we will identify two
functions appearing in the solutions of (3.12) if they only differ in their constant
terms.

ii) If
(
U+(t), U−(t)

)
= 0 or

(
W (t), V (t)

)
= 0, then (3.12) is always true. We

call such (U+, U−, W, V ) ∈ S(B2) a trivial solution of (3.13).

We summarize elementary transformations acting on S(B2).

Lemma 3.5. Let
(
U+(t), U−(t), V (t),W (t)

)
∈ S(B2).

i) (dual)
(
V (t),W (t), U+(t2), U−(t2)

)
∈ S(B2).

ii) (bilinear) If
(
U+(t), U−(t), S(t), T (t)

)
∈ S(B2), then

(
aU+(t), aU−(t), bV (t)+

cS(t), bW (t) + cT (t)
)
∈ S(B2) for a, b, c ∈ C.

iii) (translations)
(
U+(ab2t), U−(bt), V (abt),W (at)

)
∈ S(B2) for a, b ∈ C \ {0}.

iv) (scaling) If
(
U+(tr), U−(tr),W (tr), V (tr)

)
is well-defined for a suitable r ∈

Q \ {0}, it is in S(B2).
v) (symmetry) If W (t) is a rational function, the reflection (x, y) 7→ (x,−y) can

be applied to the solution and then
(
U−(t), U+(t), V (t),−W (t−1)

)
∈ S(B2).

vi) (symmetry) If U−(t) is a rational function, the reflection (x, y) 7→ (y, x) can
be applied to the solution and then

(
U+(t),−U−(t−1), V (t),W (t)

)
∈ S(B2).

The lemma is a direct consequence of the definition of S(B2). For example, i)
follows from

U+(t2s2)
(
V (ts2) + W (t)

)
+ U−(s2)

(
V (ts2) − W (t)

)
= F2(t) + F1(s2) + G2(t2s2) + G1(ts2).

Note that the transformation in Lemma 3.5 vi) is equals to a certain composition
of transformations in Lemma 3.5 i), iv) and v).

Definition 3.6. If a solution of (3.13) obtained by applying transformations in
Lemma 3.5 to an original solution, it is called a standard transformation of the
original solution.

We will study non-trivial solutions of (3.13). Considering standard transforma-
tions, we may assume

(3.16) (U+
r , U−

r ) = (1, 1) or (1, 0) or (0, 1).

Proposition 3.7. Suppose
(
U+(t), U−(t), V (t), W (t)

)
is a non-trivial solution of

(3.13) with (3.11).
i) U±(t), V (t) and W (t) are rational functions.
ii) ([Oc, Theorem 2.3]) If W (t) has a pole at t = 1, then U+(t) = U−(t) and

W (t−1)+W (t) = 0. If U−(t) has a pole at t = 1, then V (t) = W (t) and U−(t−1)+
U(t) = 0.

Here we note that this equality is interpreted in the sense of Remark 3.4.
iii) ([Oc, Corollary 3.8]) If at least two of {U+(t), U−(t), V (t),W (t)} have poles

in C \ {0}, (U+, U−, V,W ) is a standard transformation of a solution given in the
list (Trig-B2) – (Toda-D(1)

2 -S-bry).

Proof. i) The equation (3.12) shows Wq−2rU
+
r = WqU

−
r if q > 2|r| + |r′|. Hence

W (t) is a rational function and therefore so are U−(t), U+(t) and V (t) because of
Lemma 3.5 i) and v). ¤



8 TOSHIO OSHIMA

Lemma 3.8. i) If V (t) has a pole at the origin, then U+(t) and U−(t) are holo-
morphic at the origin.

ii) If U+(t) has a pole at the origin, then V (t) and W (t) are holomorphic at the
origin.

Proof. If r < 0 and r′ < 0 with Vr′ 6= 0, the coefficients of sr+r′
tr

′
and that of

sr+r′
t2r+r′

in (3.13) show Vr′U−
r = Vr′U+

r = 0, which contradicts to (U+
r , U−

r ) 6= 0.
Thus we have i) and then ii) by Lemma 3.5 i). ¤

Theorem 3.9. Any non-trivial solution of (3.13) corresponds to a standard trans-
formation of a solution in the list (Trig-B2) – (Toda-C(1)

2 -S).

Proof. We will prove this theorem divided into several cases.
Case 1: One of U+, U−, V,W is zero.

Proposition 3.7 assures that we may suppose V = 0. Then (3.12) turns into

(3.17) pq(2p − q)(p − q)(Wq−2pU
+
p − WqU

−
p ) = 0.

Case 1-1: V = 0, Wr′′ 6= 0 and (U+
r , U−

r ) = (1, 1).
Suppose r̄ := −r > 0. Then (3.17) with p = −r̄ and q = r′′ − 2r̄ shows

r̄(r′′ − 2r̄)r′′(r′′ − r̄)Wr′′U+
r = 0

and hence r′′ = r̄ or 2r̄. Since r̄q(2r̄ + q)(r̄ + q)(Wq+2r̄U
+
r − WqU

−
r ) = 0,

(3.18) W (t) = atr̄(1 − tr̄)−1 + bt2r̄(1 − t2r̄)−1

Since W (t) = atr̄(1 + tr̄)−1 if 2a + b = 0, we may assume W (t) has a pole at
t = 1 by applying a transformation in Lemma 3.5 iii) and hence U+(t) = U−(t) by
Proposition 3.7 ii).

On the other hand, (3.17) with q = r′′ and that with q = 2p + r′′ show{
pr′′(2p − r′′)(p − r′′)Wr′′U−

p = 0 for p > 0,

p(2p + r′′)r′′(p + r′′)Wr′′U+
p = 0 for p < 0.

Thus we can conclude

(3.19) U+(t) = U−(t) = ct−r̄ + dt−
r̄
2 + etr̄ + ft

r̄
2 with bd = bf = 0

because
(
U+(t), U−(t), 0, bt2r̄(1 − t2r̄)−1

)
∈ S(B2).

If r > 0, rr′′(2r− r′′)(r− r′′)Wr′′U−
r = 0 and therefore r′′ = 2r or r′′ = r. Then

by putting r̄ = r, the equation (3.17) with p = r and q > r′′ implies (3.18) and
hence the same argument as above proves (3.19).

Hence the solution corresponds to a standard transformation of Case IV.
Case 1-2: V = 0 and (U+

r , U−
r ) = (1, 0) or (0, 1).

We have q(2r − q)(r − q)Wq = 0 or pq(2r − q)(r − q)Wq−2r = 0. Hence W (t) =
atr̄ + bt2r̄ with b 6= 0 and r̄ ∈ Z \ {0}

If a = 0, then (3.17) with q = 2r̄ implies U−
p = 0 for p 6= 0, r̄, 2r̄. If a 6= 0,

then (3.17) with (p, q) = ( r̄
2 , 3r̄) implies U+

r̄
2

= 0, that with q = 2r̄ implies U−
p = 0

for p 6= 0, r̄, 2r̄ and that with q = r̄ implies U−
p = 0 for p 6= 0, ± r̄

2 , r̄. Hence
U−(t) = c−tr̄ + d−t2r̄ with ad− = 0.

Since
(
U+(t−1), U−(t−1), 0,W (t−1)

)
∈ S(B2), we have U+(t) = c+t−r̄ + d+t−2r̄

with ad+ = 0 and the solution corresponds to the standard transform of Case V.
Now we may assume that none of U±(t), V (t),W (t) is zero and

(3.20) Vr′ 6= 0 and Wr′′ 6= 0.

Lemma 3.8 and Lemma 3.5 i) assure that we may assume r > 0 except for the
following case.
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Case 2: W and U− have poles and V and U+ are holomorphic at the origin.
Then r′′ < 0 and r < 0. Put r̄ = −r. The coefficients of s−r̄tq in (3.13) imply
W (t) = at−2r̄ + bt−r̄.

Case 2-1: W (t) = t−2r̄ + bt−r̄.
The coefficients of spt−2r̄ imply U−(s) = s−r̄. Note that U−(t−1) and W (t−1)
are holomorphic at the origin and

(
U+(t−1), U−(t−1), V (t−1),W (t−1)

)
∈ S(B2). If

U+(t−1) has a pole at the origin, Lemma 3.8 assures that V (t−1) is holomorphic
there. Hence we may assume r > 0 by using a transformation in Lemma 3.5 i) if
necessary.

Case 2-2: W (t) = t−r̄.
The coefficients spt−r̄ in (3.13) imply U−(s) = s−r̄ + cs−

r̄
2 and this case is reduced

to the previous case by Lemma 3.5 i).
Now we may assume

(3.21) r > 0.

Case 3: r > 0 and r′ > 0.
Putting p = r in (3.12), we have

(3.22) q(2r − q)(r − q)(Wq−2rU
+
r − WqU

−
r ) = 0.

Case 3-1: (U+
r , U−

r ) = (1, 0) or (0, 1).
Owing to Lemma 3.5 v), we may assume U−

r = 0. Then (3.22) with q = r′′ + 2r
means r′′ = −2r or r′′ = −r and (3.12) with q = r′′ means U− = 0. Hence this
case is reduced to Case 1.

Case 3-2: (U+
r , U−

r ) = (1, 1).
The equation (3.22) with q = r′′ means r′′ = r or r′′ = 2r.

Note that (3.22) means W (t) = atr(1− tr)−1 + bt2r(1− t2r)−1. Since U±, V and
W are holomorphic at the origin, Lemma 3.5 i) assures that if r′ 6= r′′, this case is
reduced to Case 3-1. Hence we may assume r′ = r′′ and therefore (Vr′ ,Wr′) = (1, 1)
by a suitable translation s 7→ as. It also follows from Lemma 3.5 i) that U−(s) =
cs

r′
2 (1−s

r′
2 )−1+dsr′

(1−sr′
)−1 and then this case is reduced to Proposition 3.7 iii).

Case 4: r > 0 and r′ < 0.
Using the transformation in Lemma 3.5 v) if necessary, we may assume

(3.23) (U+
r , U−

r ) = (δ, 1)

with δ = 0 or 1. The equation (3.12) with p = r +m, q− p = ±r and m < 0 means
(r + m)(2r + m)U±

r Vm = 0 and therefore

(3.24)

V (t) = at−2r + bt−r +
∑
j>0

Vjt
j ,

r′ =

{
−2r if a 6= 0,

−r if a = 0.

Here (a, b) 6= (0, 0). Moreover (3.12) with p = r shows

(3.25) U+
r Wq−2r = U−

r Wq if q /∈ {−2r,−r, 0, r, 2r, 3r, 4r}.

Put r̄ = −max{r′, r′′} > 0. Then (3.12) with q = −r̄ means

(3.26) pr̄(2p + r̄)(p + r̄)(V−r̄U
−
p+r̄ − W−r̄U

−
p ) = 0.

Similarly (3.12) with q = −r means

(3.27) pr̄(2p + r)(p + r)(bU−
p+r − W−rU

−
p ) = 0.
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If r′ > r′′, we have U− = 0 because V−r̄ = 0. Hence r′ ≤ r′′ and we may
moreover assume

(3.28) (V−r̄,W−r̄) = (1, ε) with ε = 0 or 1 and r̄ =

{
2r if a 6= 0,

r if a = 0.

Then (3.25) implies

W (t) = e1t
r(1−δtr)−1+e2t

2r(1−δt2r)−1+e3t
−2r+e4t

−r+e5t
r+e6t

2r+e7t
3r+e8t

4r

and it follows from (3.23), (3.26) and (3.28) that

(3.29) U−(s) = sr(1 − εsr)−1 + cs2r(1 − εs2r)−1.

If ε = 1, we may assume that U−(s) has a pole at s = 1 as in the argument in Case
1-1 and then b = Wr in (3.27). Note that if b 6= 0, (3.27) implies c = 0. Hence

(3.30) bc = 0

and (3.27) with p = r means

(3.31) e4 = 0 if ε = 0.

Case 4-1: (e1, e2) 6= 0 and δ = 1.
We may also assume W (t) has a pole at t = 1. If ε = 1, then U−(t) and W (t)
have poles in C\{0} and this case is reduced to Proposition 3.7 iii). Hence we may
assume ε = 0 and therefore e3 = 0 by (3.28). Then Proposition 3.7 ii) assures

(3.32)
W (t) = e1t

r(1 − tr)−1 + e2t
2r(1 − t2r)−1,

U+(s) = U−(s) = sr + cs2r.

Now (3.12) with (p, q) = (2r, r) means ce1 = 0. Thus (U+(t), U−(t), V (t), 0) ∈
S(B2) and it follows from Case 1 that V (t) = at−2r + bt−r with bc = 0. Then the
solution corresponds to (Toda-B(1)

2 -bry) or (Toda-B(1)
2 -S-bry).

Case 4-2. e1 = e2 = 0, ε = 1.
Proposition 3.7 ii) assures V (t) = W (t) = at−2r + bt−r + e5t

r + e6t
2r + e7t

3r + e8t
4r

with bc = 0. Putting q = 2p − r̄ in (3.12) we have Vr̄U
+
p−r̄ + W−r̄U

+
p = 0 if p is

sufficiently large positive integer. Hence if U+(t) is not a polynomial of t, it has a
pole in C \ {0} and this case is reduced to Proposition 3.7 iii).

Thus we may assume U+(s) =
∑N

i=r U+
i si with U+

N 6= 0. Suppose Wj = 0 for
j > M . If M > 0, the coefficients of sN tM+2N in (3.13) implies WMU+

N = 0. Hence
e5 = e6 = e7 = e8 = 0 and therefore (U+, 0, V,W ) ∈ S(B2) and Case 1 implies
U+(s) = sr + c′s2r with bc′ = 0. The solution is a standard transform of case V.

Case 4-3: e1 = e2 = ε = 0.
Then U−(s) = sr + cs2r and W (t) = e5t

r + e6t
2r + e7t

3r + e8t
4r. Putting p = q + r

in (3.12), we have VqU
−
r − WqU

−
q+r = 0 for q > 0 and therefore V (t) = at−2r +

bt−r + ce5t
r.

Suppose U+(s) is not a polynomial of s. Putting q = 2p + r̄ in (3.12), we
have U+

p+r̄ + Wr̄U
+
p = 0 for a sufficiently large p. We may assume U+(s) has a

pole at s = 1. Then Wr̄ = −1 and Proposition 3.7 ii) with Lemma 3.5 proves
V (t−1) + W (t) = 0 and V (t) = at−2r + bt−r with bc = 0. Thus (U+, 0, V,W ) ∈
S(B2) and U+(s) = d1s

r(1−sr)−1 +d2s
2r(1−s2r)−1 with bd2 = 0 and the solution

is a standard transform of Case IV.
Now we may assume U+(s) =

∑N
i=r U+

i si and W (t) =
∑M

i=r Wit
i with WMU+

N 6=
0. Then (3.12) with (p, q) = (N,M + 2N) shows WMU+

N = 0, which contradicts to
the assumption. ¤
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Corollary 3.10. The non-trivial solutions R(x, y) of (3.1) with regular singularity
at the point t = 0 are transformations of the following solutions under translations.

C1

(
sinh−2 λ(x + y) + sinh−2 λ(x − y)

)
+ C2

(
sinh−2 λx + sinh−2 λy

)
+ C3

(
sinh−2 2λx + sinh−2 2λy

)
+ C0,

(Trig-BC2-reg)

C1

(
sinh−2 λ(x + y) + sinh−2 λ(x − y)

)
+ C2

(
sinh−2 2λ(x + y) + sinh−2 2λ(x − y)

)
+ C3

(
sinh−2 2λx + sinh−2 2λy

)
+ C0,

(Trigd-BC2-reg)

C1

(
e−2λ(x+y) + e−2λ(x−y)) + C2 sinh−2 λy + C3 sinh−2 2λy + C0,

(Toda-D2-bry)

C1 sinh−2 λ(x − y) + C2 sinh−2 2λ(x − y) + C3

(
e−4λx + e−4λy) + C0,

(Todad-D2-bry)

C1 sinh−2 λ(x − y) + C2

(
e−2λx + e−2λy) + C3

(
e−4λx + e−4λy) + C0,

(Trig-A1-bry-reg)

C1

(
e−λ(x+y) + e−λ(x−y)) + C2

(
e−2λ(x+y) + e−2λ(x−y))

+ C3 sinh−2 λy + C0,

(Trigd-A1-bry-reg)

C1e
−λ(x−y) + C2e

−λy + C3e
−2λy + C0,

(Toda-BC2)

C1e
−λ(x−y) + C2e

−2λ(x−y) + C3e
−2λy + C0.

(Todad-BC2)

4. Type Bn (n ≥ 3)

Let Rn be the Euclidean space with the natural inner product 〈x, y〉 =
∑n

i=1 xiyi

for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Then ei = (δi1, . . . , δiν , . . . , δin) for
i = 1, . . . , n form a natural orthonormal basis of Rn. For v ∈ Rn, let ∂v be the

differential operator defined by (∂vψ)(x) =
dψ(x + tv)

dt

∣∣∣
t=0

for a function ψ(x) on
Rn and we put ∂i = ∂ei . If v 6= 0, the reflection wv with respect to v is a linear

transformation of Rn defined by wv(x) = x − 2〈v, x〉
〈v, v〉

v for x ∈ Rn.

The root system Σ = Σ(Bn) of type Bn is realized in Rn by

(4.1)



Σ(An−1)+ = {ei − ej ; 1 ≤ i < j ≤ n},
Σ(Dn)+ = Σ+

L = {ei ± ej ; 1 ≤ i < j ≤ n},
Σ(Dn) = ΣL = {α,−α; α ∈ Σ(Dn)+},
Σ(Bn)+S = Σ+

S = {ek; 1 ≤ k ≤ n},
Σ(Bn)+ = Σ+ = Σ(Dn)+ ∪ Σ(Bn)+S ,

Σ(Bn) = {α, −α; α ∈ Σ(Bn)+}.

The Weyl group WΣ of Σ is the finite group generated by {wα; α ∈ Σ}, which
is the group generated by the permutation of the coordinate (x1, . . . , xn) of Rn

and by the change of the signs of some coordinates xi. For a subset F of Σ, let
WF denote the subgroup of WΣ generated by {wα; α ∈ F}. Then we call the set
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F̄ = {wα; w ∈ WF and α ∈ F} the root system generated by F and WF the Weyl
group of the root system F̄ . Let

(4.2) P =
n∑

j=1

∂2

∂x2
j

+ R(x)

be a differential operator with a function R(x) such that it admits a differential
operator

(4.3) Q =
n∑

j=1

∂4

∂x4
j

+ S with ordS < 4

satisfying PQ = QP .
Now we assume

(4.4)

R(x) =
∑

α∈Σ(Bn)+

uα(〈α, x〉)

=
∑

1≤i<j≤n

(
uij(xi + xj) + vij(xi − xj)

)
+

n∑
k=1

wk(xk),

uij = uei−ej , vij = uei+ej and wk = uek

for 1 ≤ i < j ≤ n and 1 ≤ k ≤ n.

For α ∈ Σ(Bn)+, we put u−α(t) = uα(−t) for the convention.
Fix indices i and j with 1 ≤ i < j ≤ n and put uji(t) = uij(−t) and I(i, j) =

{1, . . . , n}\{i, j}. It follows from the proof of [OOS, Theorem 6.1] that the condition
for the existence of Q is equivalent to

(4.5) Sij = Sji (1 ≤ i < j ≤ n)

with

Sij =
(
∂2

i wi(xi) +
∑

ν∈I(i,j)

∂2
i

(
uiν(xi + xν) + viν(xi − xν)

))
·
(
uij(xi + xj) − vij(xi − xj)

)
+ 3

(
∂iw

i(xi) +
∑

ν∈I(i,j)

∂i

(
uiν(xi + xν) + viν(xi − xν)

))
·
(
∂iu

ij(xi + xj) − ∂iv
ij(xi − xj)

)
+ 2

(
wi(xi) +

∑
ν∈I(i,j)

(
uiν(xi + xν) + viν(xi − xν)

))
·
(
∂2

i uij(xi + xj) − ∂2
i vij(xi − xj)

)
+

∑
ν∈I(i,j)

(
∂2

i uiν(xi + xν) − ∂2
i viν(xi − xν)

)(
ujν(xj + xν) − vjν(xj − xν)

)
.

Then we have assumed that

(4.6) uα(log t) =
∑

uα
ν tν for α ∈ Σ+

with uα
ν ∈ C. Here uα(log t) is analytic if 0 < |t| ¿ 1 and uα

ν = 0 if ν is a sufficiently
large negative integer.
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Put

(4.7)

tj = e−xj+xj+1 (j = 1, . . . , n − 1), tn = e−xn ,

uij(xi + xj) =
∑

uij
ν tνi · · · tνj−1t

2ν
j · · · t2ν

n ,

vij(xi − xj) =
∑

vij
ν tνi · · · tνj−1,

wi(xk) =
∑

wi
νtνk · · · tνn,

Uα(t) =
∑

ν∈Z\{0}

Uα
ν tν with uα

ν = νUα
ν and α ∈ Σ+.

Here 1 ≤ i < j ≤ n and uij
ν , vij

ν and wi
ν ∈ C and they are zero if ν is a sufficiently

big negative integer. Then the coefficients of (ti · · · tj−1)q(tj · · · tn)p in (4.5) show

pqwi
2p−qu

ij
q−p − p(2p − q)wj

qv
ij
p−q = q(q − p)wi

q−2pu
ij
p − (2p − q)(p − q)wjuij

p

if pq(p − q)(2p − q) 6= 0 and therefore by putting

(4.8)


U±(t) =

∑
ν≥r U±

i tν , V (t) =
∑

ν≥r Vνtν and W (t) =
∑

ν≥r′′ Wνtν ,

U±
0 = V0 = W0 = 0,

uij(t) = t(U+)′(t) + uij
0 , vij(t) = t(V −)′(t) + vij

0 ,

wi(t) = tV ′(t) + wi
0 and wj(t) = tW ′(t) + wj

0,

we have (3.12) and (3.13). Hence (uij , vij , wi, wj) is a standard transformation of
a solution of type B2 studied in §3.

Suppose {α, β, α + β} ⊂ Σ+
L . Then (α, β, α + β) is one of the followings

(ei1−i2 , ei2−i3 , ei1−i3),(4.9)

(ei1−i2 , ei2+i3 , ei1+i3),(4.10)

(ei2−i3 , ei1+i3 , ei1+i2),(4.11)

(ei1−i3 , ei2+i3 , ei1+i2)(4.12)

with 1 ≤ i1 < i2 < i3 ≤ n.
Put s = e−〈α,x〉 and t = e−〈β,x〉. Moreover put (i, j, ν) = (i1, i2, i3), (i1, i2, i3),

(i2, i3, i1) and (i1, i3, i2) according to (4.9), (4.10), (4.11) and (4.12), respectively.
Then (uα, uβ , uα+β) = (vij , vjν , viν), (vij , ujν , uiν), (vij , ujν , uiν) and (vij , ujν , uiν),
respectively, and the coefficients of sptq in (4.5) show

(4.13) (−q2 − 3(p − q)q − 2(p − q)2)uα+β
q uα

p−q + p2uα+β
p uβ

q−p

= (−q2 + 3pq − 2p2)uβ
q uα

p + (q − p)2uα+β
p uβ

q−p.

if pq(p − q) 6= 0. Hence

(4.14) pq(p − q)(2p − q)(Uα
p Uβ

q − Uα
p−qU

α+β
q − Uβ

q−pU
α+β
p ) = 0.

Now put (i, j, ν) = (i2, i3, i1), (i1, i3, i1), (i1, i3, i2) and (i2, i3, i1) according to
(4.9), (4.10), (4.11) and (4.12), respectively. Then (uα, uβ , uα+β) = (viν , vij , vjν),
(viν , uij , ujν), (vjν , uij , uiν) and (vjν , uij , uiν), respectively, and the coefficients of
sptq in (4.5) show

(4.15)
(
p2 + 3(q − p)p + 2(q − p)2

)
uα+β

p uβ
q−p − q2uα+β

q uα
p−q

= (p2 − 3pq + 2q2)uα
p uβ

q − (p − q)2uα+β
q uα

p−q

if pq(p − q) 6= 0 and we have

(4.16) pq(p − q)(p − 2q)(Uα
p Uβ

q − Uα
p−qU

α+β
q − Uβ

q−pU
α+β
p ) = 0.
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Combining (4.14) and (4.16), we get

(4.17) pq(p − q)(Uα
p Uβ

q − Uα
p−qU

α+β
q − Uβ

q−pU
α+β
p ) = 0.

Namely,

(4.18)
(
Uα(s) + Uβ(t) − Uα+β(st)

)2 = Fα(s) + Fβ(t) + Fα+β(st)

with suitable functions Fα, Fβ and Fα+β . Then if at least two in {Uα, Uβ , Uα+β}
do not vanish, Proposition 2.2 shows that

(
Uα(t), Uβ(t), Uα+β(t)

)
is a standard

transformation of
(
tr(1 − tr)−1, tr(1 − tr)−1, tr(1 − tr)−1

)
or (C1t

r, C2t
r, C3t

−r).
The argument above shows the following lemma.

Lemma 4.1. Let α and β ∈ Σ such that α 6= ±β, 〈α, β〉 6= 0, |α| ≥ |β|, Uα 6= 0
and Uβ 6= 0. Suppose

Uα(t) = C1t
r.

Then we have the following two cases.
Case 1: |α| = |β|.

Uβ(t) =

{
C ′

1t
r if 〈α, β〉 < 0,

C ′
1t

−r if 〈α, β〉 > 0.

Case 2: |α|2 = 2|β|2.

Uβ(t) = C ′
1t

r(1 − tr) + C ′
2t

2r(1 − t2r) and Uwβ(α)(t) = Uα(t) under a translation

or

Uβ(t) =

{
C ′

1t
r + C ′

2t
2r if 〈α, β〉 < 0,

C ′
1t

−r + C ′
2t

−2r if 〈α, β〉 > 0.

Definition 4.2. For the functions uα in (4.4), put

(4.19) ∆ = {α ∈ Σ(Bn)+; u′
α 6= 0}.

Let ∆̄ be the root system generated by ∆ and let

(4.20) ∆̄ = ∆̄1 ∪ · · · ∪ ∆̄N

be the decomposition into irreducible root systems. Put

(4.21) ∆k = ∆̄k ∩ ∆

and we call it an irreducible component of ∆.
We say that P with the potential function R(x) is irreducible if ∆̄ is an irreducible

root system of rank n or of type An−1.

Remark 4.3. i) ∆ = ∆1 ∪ · · · ∪ ∆N .
ii) Suppose α ∈ ∆k. Then β ∈ ∆ is an element of ∆k if and only if there exists

a sequence α1 = α, α2, . . . , α` = β ∈ ∆ such that 〈αi, αi+1〉 6= 0 for i = 1, . . . , `−1.

Lemma 4.4. Let ∆′ be an irreducible component of ∆ and let ∆̄′ and ∆̄′
L be the

root systems generated by ∆′ and ∆′
L := ∆′ ∩ ΣL, respectively. Suppose ∆̄′ is of

type Bm with m > 2. Then ∆̄′
L is of type Am−1 or type Dm.

Proof. Since ∆′
L and {e1, . . . , em} generate ∆′, there exist αi ∈ ∆′

L such that
〈αi, ei〉 6= 0 and 〈αi, ei+1〉 6= 0 for 1 ≤ i < m. Since α1, . . . , αm−1 generate a root
system of type Am−1, ∆̄′

L is of type Am−1 or type Dm. ¤

Lemma 4.5. Let S be a subset of a classical root system Σ̃ of type A or B. Suppose
S generates an irreducible root system S̄ and

〈α, β〉 ≤ 0 for α ∈ S and β ∈ S with α 6= β.
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If the rank of S̄ is larger than one, S is the image of one of the following sets under
the suitable transformation by an element of the Weyl group of Σ̃.

{e1 − e2, . . . , em−1 − em} (m ≥ 3),(4.22)

{e1 − e2, . . . , em−1 − em, em} (m ≥ 2),(4.23)

{e1 − e2, . . . , em−1 − em, em−1 + em} (m ≥ 4),(4.24)

{e1 − e2, . . . , em−1 − em, em − e1} (m ≥ 3),(4.25)

{e1 − e2, . . . , em−1 − em, em, −e1} (m ≥ 2),(4.26)

{e1 − e2, . . . , em−1 − em, em−1 + em, −e1 − e2} (m ≥ 4),(4.27)

{e1 − e2, . . . , em−1 − em, em−1 + em, −e1} (m ≥ 3).(4.28)

Proof. Let S′ be a subset of S such that S′ is a transformation of one of the sets
{e1}, {e1 − e2}, (4.22), (4.23) and (4.24) by an element of the Weyl group of Σ̃.

If the number of the elements of S′ is smaller than the rank of S̄, there exists
α ∈ S and β ∈ S′ such that 〈α, β〉 6= 0 and α /∈

∑
γ∈S′ Rγ. Then it is easy to see

that S′ ∪ {α} is a transformation of (4.22), (4.23) or (4.24) by a suitable element
of the Weyl group.

Thus we may assume that S′ equals (4.22) or (4.23) or (4.24) and that the number
of the elements of S′ equals the rank of S̄. Put So = {β ∈ Σ̃ ∩

∑
γ∈S′ Rγ; 〈β, γ〉 ≤

0 for any γ ∈ S′}. Then if S′ is (4.22) or (4.23), So = {em−e1} or {−e1,−e1−e2},
respectively. If S′ is (4.24), then So = {−e1−e2,−e1} or {−e1−e2} according to Σ̃ is
of type B or A, respectively. Thus the lemma is clear because S′ ⊂ S ⊂ S′∪So. ¤

Lemma 4.6. Let ∆̄ be a root system generated by a classical root system Σ̃ of type
An−1 or Bn. Let ∆̄ = ∆̄1 ∪ · · · ∪ ∆̄N ′ ∪ · · · ∪ ∆̄N be an irreducible decomposition so
that the rank of ∆̄i is larger than one for 1 ≤ i ≤ N ′ and the rank of ∆̄i equals one
for N ′ < i ≤ N . Then under the transformation by an element of the Weyl group
of Σ, there exists a sequence of integers 0 = n0 < n1 < n2 < · · · < nN ′ such that
∆̄i is generated by

{eni−1+1 − eni−1+2, . . . , eni−1 − eni} if ∆̄i is of type A,

{eni−1+1 − eni−1+2, . . . , eni−1 − eni , en−i−1 + eni} if ∆̄i is of type D,

{eni−1+1 − eni−1+2, . . . , eni−1 − eni , eni} if ∆̄i is of type B

for 1 ≤ i ≤ N ′. Moreover if N ′ < i ≤ N . ∆̄i equals {±eν}, {±(eν − eν+1)} or
{±(eν + eν+1)} for a suitable ν with ν > nN ′ .

Proof. Note that {α ∈ Σ̃; 〈e1 − e2, α〉 = 0} is generated by{
{e3 − e4, . . . , en−1 − en} if Σ̃ is of type An,

{e3 − e4, . . . , en−1 − en, en} and {e1 + e2} if Σ̃ is of type Bn.

Hence the lemma is clear by the induction on N if N ′ = 0.
Suppose N ′ > 0. By the preceding lemma, we may assume that the fundamental

system of ∆1 is (4.22), (4.23) or (4.24). Then {α ∈ Σ̃; 〈e1−e2, α〉 = 0} is generated
by {

{em+1 − em+2, . . . , en−1 − en} if Σ̃ is of type An,

{em+1 − em+2, . . . , en−1 − en, en} if Σ̃ is of type Bn

and the lemma is clear by the induction on N ′. ¤

Remark 4.7. i) Fix α ∈ ∆′. Let v ∈ Rn with 〈α, v〉 = 0. Then ∂vuα(〈α, x〉) = 0.
ii) If the rank of ∆̄′ equals one, uα(t) for α ∈ ∆′ is any function.



16 TOSHIO OSHIMA

iii) If the rank of ∆̄′ is larger than one, Uα(t) with α ∈ ∆′ are global meromor-
phic functions and therefore we may study {Uα(t); α ∈ ∆′} under the image of a
transformation by the Weyl group.

iv) By the irreducible decomposition in Definition 4.2 our classification reduces
to the case when P is irreducible.

Theorem 4.8. Let ∆′ be an irreducible component of ∆. Then the potential func-
tion R∆′(x) :=

∑
α∈∆′ uα(〈α, x〉) is a transformation of a function in the following

list with m ≥ 2 under a map generated by the Weyl group, translations and scalings
of the coordinates (cf. Lemma 3.5).

Type A1: If the rank of ∆̄′ equals 1, R∆′(x) is an arbitrary function of 〈α, x〉 with
α ∈ ∆′. This solution is called trivial.

Type B2: A standard transform of the function in the list (Trig-B2) – (Toda-C(1)
2 )

in §3 with replacing (x, y) by (x1, x2).

(Trig-Bm): Trigonometric potential of type Bm:∑
1≤i<j≤m

C0

(
sinh−2 λ(xi + xj) + sinh−2 λ(xi − xj)

)
+

m∑
k=1

(
C1 sinh−2 2λxk + C2 sinh−2 λxk + C3 cosh 2λxk + C4 cosh 4λxk

)
.

(Trig-Am−1-bry): Trigonometric potential of type Am−1 with boundary:∑
1≤i<j≤m

C0 sinh−2 λ(xi − xj)

+
m∑

k=1

(
C1e

−2λxk + C2e
−4λxk + C3e

2λxk + C4e
4λxk

)
,

(Toda-B(1)
m -bry): Toda potential of type B

(1)
m with boundary:

m−1∑
i=1

C0e
−2λ(xi−xi+1) + C0e

−2λ(xm−1+xm) + C1e
2λx1 + C2e

4λx1

+ C3 sinh−2 λxm + C4 sinh−2 2λxm,

(Toda-C(1)
m ): Toda potential of type C

(1)
m :

m−1∑
i=1

C0e
−2λ(xi−xi+1) + C1e

2λx1 + C2e
4λx1 + C3e

−2λxm + C4e
−4λxm ,

(Toda-D(1)
m -bry): Toda potential of type D

(1)
m with boundary:

m−1∑
i=1

C0

(
e−2λ(xi−xi+1) + e−2λ(xm−1+xm) + e2λ(x1+x2)

)
+ C1 sinh−2 λxm + C2 sinh−2 2λxm + C3 sinh−2 λx1 + C4 sinh−2 2λx1,

(Toda-A(1)
m−1): Toda potential of type A

(1)
m−1:

m−1∑
i=1

C0e
−2λ(xi−xi+1) + C0e

2λ(x1−xm).
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Definition 4.9. We define some potential functions as specializations of the above.
(Trig-Am−1): Trigonometric potential of type Am−1 is (Trig-Am−1-bry) with

C1 = C2 = C3 = C4 = 0.
(Toda-B(1)

m ): Toda potential of type B
(1)
m is (Toda-B(1)

m -bry) with C3 = C4 = 0.
(Toda-D(1)

m ): Toda potential of type D
(1)
m is (Toda-D(1)

m -bry) with C1 = C2 =
C3 = C4 = 0.

(Toda-Dm-bry): Toda potential of type Dm with boundary is (Toda-B(1)
m -bry)

with C1 = C2 = 0.
(Toda-Am−1): Toda potential of type Am−1 is (Toda-C(1)

m ) with C1 = C2 =
C3 = C4 = 0.

(Toda-BCm): Toda potential of type Bm is (Toda-C(1)
m ) with C1 = C2 = 0.

(Toda-Dm): Toda potential of type Dm is (Toda-B(1)
m -bry) with C1 = C2 =

C3 = C4 = 0.

Proof of Proposition 4.8. We may assume that ∆̄′ is not of type B2. Then
Lemma 4.4 says that for any elements α and β of ∆′

L, there exists a sequence
α = α1, α2, . . . , αk = β such that 〈αi, αi+1〉 6= 0 and αi ∈ ∆′

L for i = 1, . . . ,m − 1.
Note that the number of elements of ∆′

L is larger than one. Fix α ∈ ∆′. Then
lemma 4.1 assures that Uα(t) = Ctr(1 − atr)−1 with a ∈ C.

Case 1: Uα(t) = Ctr.
Lemma 4.1 proves that Uβ(t) = Cβt2ε(β)r for β ∈ ∆′

L. Here ε(β) = 1 or −1.
Then the set SL = {ε(β)β; β ∈ ∆′

L} satisfies the assumption of Lemma 4.5 and
therefore we may assume that SL equals (4.22), (4.24), (4.25) or (4.27) under the
transformation of an element of the Weyl group, which correspond to (Toda-Am−1),
(Toda-Dm), (Toda-A(1)

m−1) and (Toda-D(1)
m ), respectively, if Uei(t) = 0 for i =

1, . . . ,m. Suppose Uei(t) 6= 0 with a suitable i satisfying 1 ≤ i ≤ m. Then
Lemma 4.1 shows that one of the the following two cases occurs, from which the
statement of the proposition is clear.

Case 1-1: Uei(t) = C ′tr(1 − atr) + C ′′t2r(1 − at2r) with a 6= 0.
We may assume a = 1 by a translation. Lemma 4.1 shows that then U−ei−ei+1(t) =
Uei−ei+1(t) and if i > 1 and Uei−1−ei(t) = Uei−1+ei(t) if i < m. Therefore

i = 1 and SL equals (4.27)
(
⇒ (Toda-D(1)

m -bry)
)

or
i = m and SL equals (4.24) or (4.27)

(
⇒ (Toda-B(1)

m -bry) or (Toda-D(1)
m -bry)

)
.

Case 1-2: Uei(t) = C ′tεir + C ′′t2εir with εi = ±1.
Lemma 4.1 says εi〈ei, α〉 ≤ 0 for α ∈ SL, only the following cases occur.{

i = 1 and SL equals (4.22) or (4.24)
(
⇒ (Toda-C(1)

m ) or (Toda-B(1)
m -bry)

)
,

i = m and SL equals (4.22)
(
⇒ (Toda-C(1)

m )
)
.

Case 2: Uα(t) = Cαtr(1 − aαtr)−1 with aα 6= 0.
The argument just before Lemma 4.1 says that the condition Uβ(t) 6= 0 and Uγ(t) 6=
0 with |α| = |β| = |γ| means Uwβ(γ)(t) 6= 0. Hence {±β; β ∈ ∆′

L} is a root system
of type Am−1 or Dm. We may assume aα = 1 for its simple root α and hence Cα

and aα does not depend on α ∈ ∆′
L because of (4.18) and Proposition 2.1.

Case 2-1: ∆̄′
L is of type A.

Considering {Uei+ei+1 , Uei−ei+1 , Uei , Uei+1}, Theorem 3.9 shows Uei(t) = Uei+1(t) =
C1t

r + C2t
2r + C3t

−r + C4t
−2r and this case is reduced to (Trig-Am−1-bry).

Case 2-2: ∆̄′
L is of type D.

By the same consideration as in the previous case we may assume Ueν (t) = C1t
r(1−
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tr)−1 + C2t
2r(1 − t2r)−1 + C3(tr − t−r) + C4(t2r − t−2r) for ν = 1, . . . ,m. Hence

this case is reduced to (Trig-Bm). ¤

Corollary 4.10. The non-trivial solutions in Proposition 4.8 which have regular
singularity at the point t = 0 are in Corollary 3.10 or in the following list.∑

1≤i<j≤m

C0

(
sinh−2 λ(xi + xj) + sinh−2 λ(xi − xj)

)
+

m∑
k=1

(
C1 sinh−2 2λxk + C2 sinh−2 λxk

)
,

(Trig-BCm-reg)

∑
1≤i<j≤m

C0 sinh−2 λ(xi − xj) +
m∑

k=1

(
C1e

−2λxk + C2e
−4λxk

)
,(Trig-Am−1-bry-reg)

C0

m−1∑
i=1

e−2λ(xi−xi+1) + C0e
−2λ(xm−1+xm) + C3 sinh−2 λxm + C4 sinh−2 2λxm,

(Toda-Dm-bry)

C0

m−1∑
i=1

e−2λ(xi−xi+1) + C3e
−2λxm + C4e

−4λxm .(Toda-BCm)

Remark 4.11. We have a natural compactification X of the space Cn of t so that
for every w ∈ WΣ(Bn)

sw
j = e−(x′

j−x′
j+1) (j = 1, . . . , n − 1), sw

n = e−x′
n with x′ = wx

gives a local coordinate system of X and tj = se
j (j = 1, . . . , n). Then the non-trivial

potential functions R(x) we have obtained is meromorphic on X.
If R(x) is holomorphic at (sw

1 , . . . , sw
n ) = 0 for any w ∈ WΣ(Bn), R(x) is said

to have regular singularity at every infinity . In this case, our classification says
that R(x) is decomposed to the functions (Trig-BCm-reg) and/or (Trig-Am) which
exactly corresponds to Heckman-Opdam’s potential function of classical type. This
gives a characterization of Heckman-Opdam’s hypergeometric equations.
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