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Abstract

We study Weyl group orbits in symmetric Kac-Moody root systems
and show a finiteness of orbits of roots with a fixed index. We apply this
result to the study of the Euler transform of linear ordinary differential
equations on the Riemann sphere whose singular points are regular
singular or unramified irregular singular points. The Euler transform
induces a transformation on spectral types of the differential equations
and it keeps their indices of rigidity. Then as a generalization of the
result in [10], we show a finiteness of Euler transform orbits of spectral
types with a fixed index of rigidity.

1 Introduction

Recall the definition of symmetric Kac-Moody root systems (precise defini-
tion of terminology appearing below can be found in the latter section, see
§2.1). For a finite index set I, define a lattice Q := ,c; Zo; with a basis
{a; | i € I} and consider a symmetric bilinear form on ) which satisfies

<CV7;,Oéi> = 27
(g, 05) = (0, 4) € Z<y (4, j € 1 and i # j).

The Weyl group W acting on @ is generated by simple reflections,

0i(B) =P — (B,ai)a; for f € Q and i € 1.
Then a certain subset of @), called the set of roots, is defined by

A= UWaZ- UWFEFU-WF.
el
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Here F:= {a € Q1 \ {0} | supp « is connected and (o, ;) <0 for all i € I}
with QT := PB,cr Z>o0;. In particular we call A := |J;c; Way the set of
real roots and Ay, := WFLI—WF the set of imaginary roots. If & € A is in
Q™, it is called a positive root. Moreover we call elements in F basic positive
imaginary roots or shortly basic roots. Then we call the triple (1, (, ), A)
or shortly (I, (, )) the symmetric Kac-Moody root system.

A symmetric Kac-Moody root system ({( , )1, I1) is a subsystem of a
symmetric Kac-Moody root system ({, )2, I2) if there is an injective map
¢ of Iy to Iy such that (o, )1 = <a¢(i),a¢(j)>2 for 4, j € I and in this
case the root of ((, )1, I1) is naturally identified with a root of ({, )2, I2).
Thus we can define the universal symmetric Kac-Moody root system by the
inductive limit of symmetric Kac-Moody root systems under the injective
maps defining subsystems.

One of our main aim is to classify the orbits of roots under the action of
the Weyl group in the universal symmetric Kac-Moody root system. Since
the real roots form a single orbit of the Weyl group, it is sufficient to classify
the orbits contained in the set of positive imaginary roots, i.e., elements in
A;{n = Ajn N QT = WF. Thus what we need to do is to classify elements
in F', i.e., basic roots.

For an element « in a root lattice, the index of « is defined by idx « :=
(o, ). The classification of basic roots with index 0 is known as follows.
Dynkin diagrams of supports of them are classified by the following 5 cases.

Moreover for each diagram, there exists a unique indivisible root and
any basic roots are scalar multiples of one of these indivisible roots. Here
o= Zie ;m;cy is indivisible if the greatest common divisor of coefficients
m; is 1.

Hence in this case, the classification of Weyl group orbits of imaginary
roots is obtained by the classification of indivisible basic roots which corre-
spond to the above finite cases.

One of the main results in this paper is to show a finiteness of basic roots
with a general index. For this purpose we introduce the shape of an element
in a root lattice. Fix a root lattice Q = @,.; Za; and o = ),y micy; € Q.
For the Dynkin diagram of the support of «, we attach each coefficient m;
of « to the vertex corresponding to «;, then we obtain the diagram with the
coefficients, which we call the shape of a.

We say i1,...,i; € {i € I | m; # 0} is a constant connected sequence of



a if m;; = --- =m;, and the Dynkin diagram of {a;,,..., a4, } is

Theorem 1.1 (see Corollary 2.3). If a basic root o = ), ; mjc; contains a
constant connected sequence iy, ... ,1i; of I satisfying k > 2 and (o, a;,) =0
forv =2,...,k — 1, then the shape obtained from that of o by shrinking
or extending the length of the sequence corresponds to a basic root with the

same index. Fxpressing such a sequence by 8 8 , we have shapes of roots
which may contain such expressions. We call these shapes reduced shapes.

Then the basic roots with a fized nonzero index are classified by a finite
number of reduced shapes. The indivisible basic roots with index 0 are also
classified by a finite number of reduced shapes.

Moreover proceeding further from the classification of basic roots with
index 0 seen above, we give the complete list of shapes of basic roots with
index —2 in §2.4.

Another aim of this paper is to give a classification of orbits of linear
ordinary differential equations under the action of the Euler transform as
an application of our classification of basic roots.

Consider a Fuchsian system of ordinary differential equations on the Rie-
mann sphere of the form %Y(x) =>r, xé—lclY(m) where A; (i = 0,...,p)
are n X n matrices with coefficients in C and Y (z) is a C™-valued function.
For this system, W. Crawley-Boevey [2] constructs a representation of a
quiver, more precisely, a deformed preprojective algebra, with a star-shaped
quiver. His result shows that for an irreducible Fuchsian system, the dimen-
sion vector of the corresponding representation of the quiver is a positive
root in the Kac-Moody root system of its quiver. Then the index of rigidity
of the Fuchsian system equals the index of the root and reflection functors
on representations of the quiver are obtained by algebraic transformations
on Fuchsian systems, the Euler transform and the addition. Thus to study
orbits of irreducible Fuchsian systems under the actions of the Euler trans-
form and the additions, we can apply the classification of Weyl group orbits
of the roots.

In [10, 11] the corresponding results for Fuchsian single differential equa-
tions together with the analysis of their global solutions, namely, integral
representations of the solutions and the connection problem etc., are studied.

In [7], we consider a generalization of the result of Crawley-Boevey to
ordinary differential equations whose singular points are regular singular or
unramified irregular singular points. As in the case of the Fuchsian equa-
tions, there exists a Kac-Moody root system attached to a differential equa-
tion such that its spectral type corresponds to an element in the root lattice
(see Theorem 3.14, Theorem 3.15 and Definition 3.20). Here a spectral type
is a tuple of integers representing multiplicities of characteristic exponents



of local formal solutions of a differential equation where we ignore integer
differences of characteristic exponents (see §3.1.2 for the precise definition).
Thus for spectral types it shall be defined an analogy of basic roots, called
basic pairs (see Definition 3.16). Then we shall consider a classification of
basic pairs in §3.3 as an application of that of basic roots.
Combining this result with Theorem 1.1, we show the following theorem
which generalizes the result of the second author [9, 10] in the Fuchsian case.

Theorem 1.2 (see Theorem 3.7). Fiz an integer r > 0 and consider linear
differential equations with index of rigidity —r on the Riemann sphere whose
stngular points are reqular singular or unramified irreqular singular points.

Then we have the finiteness of orbits of spectral types of the differen-
tial equations under the actions of the Fuler transform and the addition.
Namely, if r > 0, there exist only a finite number of orbits and if r = 0,
there exist a finite number of orbits of indivisible spectral types.

Finally in §3.3.2 and §3.3.3, we classify basic pairs with indices of rigidity
0 and —2. This gives classifications of Euler transform orbits of differential
equations with these indices of rigidity. When all singular points are regular
singular points, these classifications are given by V. Kostov [6] and the
second author [9, 10], respectively.

2 A classification of basic roots

2.1 Symmetric Kac-Moody root systems
Let Q := @,c;Za; be a Z-lattice with the basis {a; | ¢ € I} where I

is a finite set of indices. The set of positive elements in @ is written by
QT = QNP,¢c; Z>ow. Fix a symmetric Z-bilinear form ( , ) on Q satisfying
<ai,ai> =2 (2 S I),
(i, o) = (0, 04) € Z<o (i, j € T and i # j).
We call this lattice @ with the bilinear form (, ) the symmetric Kac-Moody

root lattice.
For an element « € @), we define an even integer

idxa == (o, @),

which we call the index of a. For each «; (i € I), we can define a Z-
endomorphism of ) by

oi(B) =B — (B, i) (B €Q),

which is called the simple reflection with respect to «;. The transformation
group W on @ generated by all these o; (i € I) is called the Weyl group.



For this lattice @), we associate a diagram which consists of edges and

vertices as follows. Regard the elements in II := {«; | i € I} as vertices.
Connect two vertices o, a; € II by n edges if (o, a;) = —n with a positive
integer n. We express this by
Q fnedgeSQ oo O——0O .
(67 Q & Qj

We call the diagram constructed as above the Dynkin diagram of Q).

Let o = > ,cymiag € Q with m; € Z. The support of « is suppa :=
{a; | m; # 0}. We say the support of « is connected if for any two distinct
elements «;, aj € supp «, there exists a sequence a; = o, iy, - .., O, = 5
of elements of supp a such that (o, ,) # 0 for k =1,...,r —1. We
define that « is indivisible if the greatest common divisor of {m; | i € I}
equals 1.

Recall the root system of (). Each element «; (i € I) of the basis of @
is called the simple root. The real roots are the elements of

Ape = U Way,

el

i.e., a real root belongs to the Weyl group orbit of a simple root «;. Define
the fundamental subset of @,

F:={a e Q" \ {0} |suppa is connected and («a, ;) <0 for all i € I}.
Then the imaginary roots are the elements of
Ajyp = WFU-WF.

Here WF ={wa |w e W, a € F} and —-WF = {—a | a € WF}. The root
is the element of A := A, UAj,. The root in AT := ANQ™ and that in F
are called positive and basic, respectively.

In general the symmetric Kac-Moody root system determined by the pair
(, ) and I shall be denoted by ((, ), I). A symmetric Kac-Moody root
system ((, )1, I1) is a subsystem of a symmetric Kac-Moody root system
((, )3, I3) if there is a map ¢ of I1 to I3 such that (ay, aj)1 = (@), @e;))3
for i, j € I and in this case the root of ((, )1, [1) is naturally identified
with a root of ((, )3, I3).

We define a root « of ({, )1, 1) and a root o of ({, )2, I2) are in
a same Weyl group orbit in a universal symmetric Kac-Moody root system
if there exists a symmetric Kac-Moody root system ({ ,)s, I3) such that
((, )1, I1) and ((, )2, I2) are subsystems of ({ , )3, I3) and moreover «
and o/ are in the same orbit under the action of the Weyl group of ({, )3, I3).
Namely, the universal symmetric Kac-Moody root system is defined by the



inductive limit of symmetric Kac-Moody root systems under the injective
maps defining subsystems.

Our purpose is to classify the Weyl group orbits in the universal symmet-
ric Kac-Moody root system. Since the real roots form a single Weyl group
orbit, it is sufficient to classify the orbits contained in the set of positive
imaginary roots.

For an element o = .. ; m;c; € @, we consider the diagram of supp «,
that is, we restrict the Dynkin diagram of 1I to supp«. Then we attach
each coefficient m; of « to the vertex corresponding to «; and obtain the
diagram of the support of o with the coefficients. We call this diagram with
coefficients the shape of .

For example, if & = mioy, + moay, + maoy, € @ with the diagram of

mi1 Mg M3
the support O—O—O , the diagram with coefficients is O—O—O .
Qi Qg Qg QG Oy Qg

Note that each Weyl group orbit contained in the set of positive imagi-
nary roots has a unique representative in I’ and therefore the orbits contain-
ing positive imaginary roots are classified by the shapes of the basic roots
in the orbits.

2.2 Basic roots with a fixed index

First we examine some properties of the shapes of basic roots.
Fix an indivisible basic root

a=Y mia; (m;€ Zs) (1)
iel
in this section and define subsets of I

I={icI|m;>0},
Io={iel]|{oa;) =0}, (2)
I =1\ I.

Lemma 2.1. Let {i1,...,ix} C J for a subset J of I such that i, # i,

for 1 <v < v <k and (o;,,0;, ) # 0 forv =1,....,k — 1. Then we

call that iq,...,1; is a connected sequence of length k in J. Moreover if

Mg, = My = -+ =My}, we call i1, ...,1 s a constant connected sequence.
i) Suppose i1,i2 is a connected sequence in I with io € Iy. Then

miy S 2mi2 (3)

and if m;, = 2m;,,
(i), aiy) = —1 (4)

and {ay, o) = 0 for v € T\ {i,ia}.



1 1
Furthermore if i1 € Iy, then (4) is valid or the shape of a is O=0 .

ii) Fizig € Iy and put J;, = {i € Iy | {ou, y) < 0}. Then #J;, < 4 and

1
1
the equality holds if and only if the shape of a s ! Af #Ji, =3,
1
then m; < m;, fori € J;, or {m; | i€ Jiy} = {m;,, %mio, %mio}.
iii) Let iy, ..., i be a connected sequence in I with k > 3. Suppose i, € Iy

forv=2,...,k—1 and m;; > m;,. Then
My — My, = (k = 1)(mi; —mq,).
Ifmil —my;

= (k —1)(ms; —m,), then

k

-1 (i=idy_1 0riys1 and 1<v<k),
<O[1;,Oéiu> = . T . . .
0 (i € I\ {ip—1, iy, Ipt1} and 1 <v <k).

If miy —my_ = (k= 2)(miy, —miy) and mi, —mg, > (k= 1)(mi, —miy),
then there exists j € I such that

(g, ,,a5) <0andjel (5)
or

My = My, Zk‘ # j; mik—l = 2mlk = QmJ
and (ag-1,0;5) = (-1, ;) = —1.

Suppose mj;, = mj, = ---=my,. Then {j € I | (a;,,a;) <0} ={ip_1,%41}
forv =2,....k —1. Moreover suppose (o, ,0c;,) = 0. Fizr € Zso, put
m = m;, and introduce new simple roots aj,,...,a; and put I' = (I_U
{1, dr}) \ i1, - ix}. Then the element o/ =, ;) micy with m;, =m
(1 <v <r)isalso a basic root such that r =1 or ji,...,J, is a constant
connected sequence satisfying (o, aj,) =0 forv =2,...,r —1 and idxa =
idxa’. Here (aj, ) = (v, iy ) + 6r1{aj, i) for j € I\ {iy,... i} ete.

m m m m , m m m m
s s — o O—O O—O:::::: (r:]_’Q’_”)
Qg Qi Oy, Qg
iv) Suppose that i1,iy is a connected sequence in I with ia € Iy and
£ :=m;, —m;, > 0. Then there exists a connected sequence i1,%2, ..., in

I such that

(i, o) =0 (i €T\ {ip_1,ip,ips1}, v=2,...,k—1)



and one of the following is valid.

(a) £ >0, kl =my,, mi, =m;;, — (v —1)0 (0<v<k),
and <Olik704i> =0 (Z S j\ {'L'k—la Zk}) :

kO (k=1)¢ (k—=2)¢ 2/ 14
N O O ,,,,,,,,,,,,,,,,, O—O
Ay Oy Qg Oy Ay,
(b) £=0, mj, =---=my, , =m; and there exist j, € Iy for v=1,2

such that 2mj, =my,, (0, 0;) =0 (i € I\ {i, ju}),
(o, ) = =1, (i, ;) =0 (i € T\ {ig—1, ik, 1, Jo}) :

1. (8)
miy mi, mi, mi, o 2 My
::::::aO an (XO ,,,,,,,,,,,,,,,, a ]1
31 i2 i3 ik 1.,
) 31y
Ay

(c) kl <my,, miy, =m;, —(v—1)0 forv=1,...,k
and there exists j € Iy with (a;,,a;) <0:

‘ m;, — (k—2)¢
:::jnoll mlb_ [ m’Ll 2€ 777777777777 mil - k - 1)€
Qi iy Qg Qi Qg Q

mil mil
e Q) (10)
Oy Ay

Proof. 1) Since (o, a;,) < —1 and (v, ay,) € Z<p for v € T\ {i1,i2} and

2mi2 + myy <ai1 ) a’i2> + Z mu<aV7 Oéi2> = <a7 ai2> = 07
I/GI\{il,iQ}

we have m;; < 2m;, and the condition m;, = 2m;, implies (a;,,a;,) = —1
and (v, a,) = 0 for v € T\ {iy,i2}.

Suppose i1 € Iy and (@, @;,) < —1. Then we have m;, < m;,. In the
same way we have m;, < m;, and hence m;, = m;, and (a;,,a;,) = —2 and

the shape of « is (1):(1) .

ii) We may assume #.J;, > 2. Since the claim i) shows («;,, @) = —1 and
m;, < 2m,, for v € J;, and the condition iy € Iy implies 2m;, _ZVEJZ-O my >
0, we have #J;, < 4. If #J,;, = 4, 2m, = m;, for v € J;, and the shape of
« is given in the claim.

Suppose #J;, = 3. Put J;, = {i1,142,4i3} with m;, > m;, > m;,. Then
mi, < 2mi, — My, — My < 2my;, — %mio - %mio = mi,. It mi; = myg,
Mmi, = M4y = %mio.



iii) We may assume k = 3. Since m;, > m,, and

0 = (o, aiip) = 2my + myy (Qiy, i) + Mgy (i, i) + Z My (0w, Qiy ),
VEI\{il,iz,ig}

we have (a;,,a;,) = —1 and 2m,;, > m;, + m;,, which means m;, —m;, >
2(mji, — my,). Moreover the condition m;, — m;, = 2(m;, — m;,) implies
(Qiy, iis) = —1 and (v, ay,) = 0 for v € T\ {iy, iz, i3}

Suppose 2m;, > m;, + m;, and i3 € Ip. Then the claim i) shows
(ay, y) = —1 and there exists j € I\ {i1,i2} satisfying (a,,a;) < 0.
Suppose j € Ip. Then 2m; > my,, 2m;; > m;, and my, — m;; — m; >
2m;, —my, — m; —m; > 0 and therefore 2m; = 2m;, = m;, = m;, and

-1 (V:il) i3aj)7
<Oli2,041,> = = ..
0 (vel\{i,i,is j}),

<aj’al/> =0 (V € I_\ {i27 ]})a
<ai3,oz,,> =0 (V S I_{ig, 23})

Thus we have iii) since the last claim in iii) is clear.
iv) The claims easily follow from iii). O

Now we give one of our main results in this paper.

Theorem 2.2. Fix integers N € Z>o and M € Z~o. Let o be the basic root
satisfying the following conditions:

1. idxa = —N.
2. N #0 or « is indivisible.

3. « has no constant connected sequence in Iy whose length is larger than
M.

Then there are only finite shapes which can be the shape of .

Proof. Since the basic roots with index 0 are well-known as are given in
the next section, we may assume N > 0. We shall use the notation in the
previous lemma. Since

N =— Zm’i<a7ai> 2 th (11)
i€l i€lq

we have
m; < N foriel; and #I; < N. (12)

Let ¢ € I; and j € Iy and suppose (a;, oj) < 0. Then

N =— Z my(a, o) > —mg{a, o) > mimil(oy, o) | — 2m?2

i
vely



and therefore

m; <m; N +2m; <3N and [(q, ;)| < 3N. (13)
Since N = =3 cp, mula,an) = =3 icr D per, mimw(ou, aw) =23 ,c, my,
we have
DY Hai ) SN +2) ml < N+2N? <3N (14)
i€lg veElL vel

and therefore #0Iy < 3N? by denoting 9l := {i € Iy | 3, (v, ) # 0}.
Fix iy € 0lyp. Suppose J;, = {j € I | (oj, ;) < 0} # (. Note that
#J;, < 3. Fix ig € J;; and put

J(i1,i2) = {i € Iy | 3 connected sequence i1, i, ...,i; =1 in Iy
with i, ¢ 0Ip (1 <v <k)}.

Then the Dynkin diagram of J(i1,i2) equals that in (7) or (8) or (9) or

mi, + (k—2)¢
My, my, + € my, + 20 mi, + (k—1)¢
o Mgt Ema 2 e # I DE (15)
(675 Ay (075 a’ik,:l aik a]

€€Z>0, o7 611, J(il,ig):{il,...,ik}, ig,...,ik_l 610\8[0

or
mkl akl
mkz 7 Oékz
mkr—l 7 ak'r—l
Mgy My mi,_, M, M,y My, My
OO O—O (16)
ail aig aip71 aip Oéjqfl an ajl
m;, = mip — (p — 1/)&-7 mju = mip — (q — V)Ej, mg, = mip - (q - V)gka

giu Eja Ek € Z>07 i?a"‘7ip7 j27' -'7jq—1,k27~- 7k7"—1 S IO\aI()u
{Zlajlakl}malo#ma p227 q227 TZQ

If the Dynkin diagram is not of the form (16), we have
#J(il,iQ) <3N+ M and m; <3N (Z S J(jl,jg)) (17)

by the estimate (13).

Hence we assume the Dynkin diagram is of the form (16). We may
assume ¢; < {; < f; without loss of generality. Since i, € Iy, we have
2m§p = m;,(m;, — ;) +m;,(m;, — £;) +m;,(m;, — £) and therefore

£i+€j+€k =m;,.

10



Hence 3¢;, > mi, and r < 3.
If k1 € 0lp, r = 2 and my, < 3N and we have

my, < 6N, #J(il,’iQ) < 12N and m; < 6N for i € J(il,ig) (18)

because p < 6N and ¢ < 6N.
Suppose k1 € Iy \ 0lp. Then r =2 or r = 3.
fr=340=10 =10 = %mip and we may assume i1 € 1y and we have
the same claim (18).
Suppose r = 2. Then ¢ = %mip and %mip >l > %mip. If jy € Iy )\ 01,
4l; = 4l; = m;, or 3l; = 6(; = m;, and therefore p <5 and
#J(il,ig) <9 and m; < 15N (Z S J(il,ig)). (19)
If j1 € 0lp, ¢ <3 and m, < 9N and therefore
#J(il,iQ) <IN +241=9N +3 and m; < 9N (iEJ(il,iQ)). (20)

Since #{(i1,i2) | i1 € Do, iz € Io, (i, i) < 0} < 3-#dlp < IN?, we
have
#I <9N?. (12N + M) + #0Iy + #I, < 108N3 +9MN? + 3N? + N,
m; < 15N (iEI) and |<ai,aj>|§3N (’i,jEI).

These estimates imply the theorem. O

The proof of Theorem 2.2 assures the following finiteness of the shapes.

Corollary 2.3. If a basic root o = ),y mjcy contains a constant connected
sequence i1, . .., i, of I such that k > 2 and (a,«;,) =0 forv=2,...,k—1,
then the shape obtained from that of o by shrinking or extending the length
of the sequence corresponds to a basic root with the same index. Expressing

such a sequence by TCr)L 8 , we have shapes of roots which may contain
such expressions. We call these shapes reduced shapes. Then the basic roots
with a fized nonzero index are classified by a finite number of reduced shapes.
Also the indivisible basic roots with index 0 are classified by a finite number
of reduced shapes.

Qg1 (2

Qg « o .
) l’lm 1’2... 18

Remark 2.4. The Dynkin diagram of the form
022

3.2

called star-shaped. The basic roots whose shapes have star-shaped Dynkin
diagrams are studied and the finiteness of such basic roots with a fized in-
dex is proved in [9]. The number of such shapes with index 0, —2, —4,

—6,...equals 4, 13, 36, 67, ..., respectively, and the list of them is given in
[10].

11



2.3 Basic roots with index 0

Theorem 2.2 assures that in the universal symmetric Kac-Moody root system
there are only a finite number of Weyl group orbits with a fixed index. The
basic roots with index 0 are well-known and we list their shapes as follows.

m
m m
m m 5 5 2m
%;3 m?j Cim m 2m  |3m 2m m
2m 3Im
m 2m 3m |4m 3m 2m m m 2m 3m 4m dm |6m 4m 2m

These are diagrams obtained by attaching coefficients to the Dynkin dia-
grams called Fuclidean diagrams, which are denoted by AS) (n>1), DS)
(n>4), Eél), Eél) and Eél), respectively. Here m are positive integers and

Aq(zl) and Dq(ll) have n + 1 vertices. Moreover Agl) and DS) mean O—O and

, respectively. Hence AS) for n > 1 shall be written by Q&

or O==Q.

2.4 Basic roots with index —2

In this section, we shall give a classification of the basic roots whose indices
are —2. Suppose that oo = >, .; mjo; € Q is basic and idx o = —2. Retain
the notation in §2.2 and put N; = —(a, o) > 0. Then (a, o) = — > ;. miN;
andIlz{i€I|Ni>0, mi>0}.

Lemma 2.5. Let o € Q be as above. Put

Ed (o)== > (o), (21)
JeN{i}
which equals the number of edges spread out from o;. Then we have the
following.
i) The cardinality #11 is 1 or 2.
ii) If Iy = {i}, there are two cases.

Case 1: m; =2, N; =1 and Ed («a;) < 5.
Case 2: m; =1, N; =2 and Ed (o) < 4.
iii) If I = {i,{}, then m; = my = N; = Ny = 1, Ed (o) < 3 and

Ed (Oéi/) < 3.

12



Proof. Since 2 = .. m;N; = Zjeh mjNj, we have #I; = 1 or 2. Then
(mZ,Nl) = (1,2) or (2,1) if Il = {Z} and m; = my = Nz = Ni’ =1if Il =
{i,4'}. The remaining assertions follow from N; = > jeng mylag, aq) —
Qmi > Ed (041) - Qmi.

From this lemma and Lemma 2.1, the basic roots with index —2 are
classified by the following cases.

Case 1: I} = {i}, m; =2 and Ed (o;) <5

Since
Z my (i, )| =5,
vel\{i}
one of the following Case 1.1, Case 1.2 or Case 1.3 is valid.

Case 1.1: There exists oy such that my; = 1 and («a;, ag) < 0.

It follows from Lemma 2.1 i) that (aj,ax) = 0 for j € I\ {4, k} and
(aj, ag) = —1. Then the element o/ = a — a € Q7 satisfies (o/, a;) = 0 for
i € I'\{k} and supp o is connected. Hence the diagram of {«; | i € I\ {k}}
is one of the Euclidean diagrams A%l), Dﬁll), Eél), Eél), Eél) given in the
previous section and we have the list of the shapes with indicating «; by
dotted circles.

) 1 1 2
1 [2 2 J21 1 2 J4
1

4 2
22

13



Note that the first shape represents z[j Elg

and the part ::Q- @ in the dlagram above can be :: =z as a special

case. Hence is a special case of the second shape.

Case 1.2: There exist aj and oy such that (mg,mp) = (2,3) and
(o, ag) = (aj, o) = —1.

Then cutting the shape of the basic root between «aj and «; and adding
three vertices, we have one or two Euclidean diagrams with coefficients cor-
responding to some basic roots of index 0:

Here each ® represents a new vertex. It follows from the shapes given in
the previous section that the corresponding diagrams are D,(}) and E,(Cl)
(k =6, 7, 8) and we have the following list of shapes:

2 2 2
Replacing O-©® by (O in the above shapes, we may regard three shapes

in Case 1.1 as special cases in Case 1.2.

Case 1.3: There uniquely exists oy with & € I such that (o, ;) < 0.
Put

{j€f| (ak,aj> <0}:{i,l1,...,lr}

with suitable r. Note that m; = 2, my =5, k € Iy, ¢, € Iy and (o, o) =
—1forv=1,...,r. Since Zjejmj@k;aj) = 0, we have

ml1+"'+mlr:2mk_mi:2x5_2:8

and Lemma 2.1 iv) shows my;, > 4 and my, # 5 for v = 1,....r. Hence
{my,...,my,} ={4,4} or {8}.

14



Suppose {my,,...,m;.} = {8}. Then the shape of « is

or
2 5 8 11  3p+5 " ,
O—0O—0—0 i O (p > 1, J1 = ll)
a; Of Oéjl Oéj2 Oéjp

and there exist positive integers p’ and p” such that p'l’ = p”l” = 3p + 5.
The condition j, € Ip shows

/
- 11
23p+5) = (Bp+2)+ Bp+ 52—+ (3p +5)p ,
_ 3p+2 p’—1+p”—1
_3p+5 p/ p// ’
1= 5 + ! + L
3p+5 p P
Since {1—l—l% |, p" €Z 0}0(0 1) C [%,1), it follows that 3p+5 =
8, 11, 14, 17 andl—m g, 181, ﬁ, 17 Then we can conclude p = 1 and

{p',p"} = {2,8}, which corresponds to 5 = 5 + 1.
Hence « is one of the following.

Case 2: I} ={i}, m; =1 and Ed (o) < 4.

Since
Z mu’<aiaau>’ =4,
vel\{i}
one of Case 2.1, ..., Case 2.4 is valid.

Case 2.1: The condition (o, a;) # 0 implies m,, < 1.
Then it follows from Lemma 2.1 that the shape of « is the following:

1 1 1
Hence the diagrams is obtained by connecting Euclidean diagrams AS) (n>
1) and Ale,) (n' > 1) at the common vertex «;.

Case 2.2: There exists oy such that (o, ;) # 0 and my, = 2.

1 1 2 1 2 2 1 2
Then the Sha,pe Of « iS O;O—O::: 2 Or @:O: s QI :::O—@—O o,
a; O o; O a0 O

15



Modify these diagrams with coefficients as follows.

112 12
a: OO—0O — o i O (22)
;O o O
1
12 o1 ]2
o = — o’ (23)
a; O (673
2 1 2 L2 112
a: o O—O—0 s — a i ms(O—Q @ (24)
A ; Op/ (677 Qpr
Here we do not modify the parts -+ in the above. Then o/, o/ and o are

elements of F' with the given shapes and their indices are 0.

The element o’ € F is a basic root with the diagram DS) or Eél) or Eél)
and in this case a corresponds to the first four shapes in the list below.

The element o € F' is an indivisible basic root with the diagram DY
and we have the fifth shape in the list below.

The shape of @ € F is that of an indivisible basic root with the diagram
DS) or Eél) or Eél) or a disjoint union of the shapes Dy and D, of indivisible
basic roots with the diagrams D, € {Dg), Eé.l), E§1), Eél)} for v =1 and
2. In each case it is easy to write the shape of a and therefore we only give
some examples in the list below.

1 1 1 1 1 1
1 2 21 1 2 2 1 1 2 21 2 21
1
1 2 1 1
2
3 2 1 1 2 21 2 132 1

Case 2.3: There exists oy such that (ag, ;) # 0 and my = 3.
1 1 3

Then « corresponds to - O—O—0==x. However applying Lemma 2.1
aEr o O

16



iv) to the part é_é of this shape, we can conclude that such « does
not exist.

Case 2.4: There exists oy such that (ag, ;) # 0 and my = 4.
In the same way as in Case 1.3 we have

{jEI_‘ <ak,aj) <0}:{i,ll,...,lr},
mll—I—---—i—mlT:ka—mi:?,
my, >2, my, #4 (1<v<r).

Hence {my,,...,my, } = {3,2,2} or {5,2} or {4,3} or {7}.

Suppose {my,,...,my,} = {7}. Then a corresponds to
o5
: 3p+4
1 4 7 10 3p+4 4 .
O—0O—C0—L0 ) (p>1, 1=10h)
o Qf QG Qi A,

and we have

/ /!
p—1 pr—1
v +(3P+4)7,

23p+4)=3p+1+3Bp+4)

_ 3 11
S 3ptd

3 3 3 3 : .
Here 3 should be %, 10> 73 Or %. It is easy to see that p = 2 together

with {p/,p"} = {2,5} is the unique solution of the above equation.
If {my,,...,mg.} = {5,2}, the shape of « is obtained by replacing a part
1
1 2 3 4 5 ) o 2 4 5
O—0O—0O—0O—0O of the shape of a basic root with index 0 by .
Hence « corresponds to one of the following:

Case 3: I ={i,i'}, mi =my =1, Ed(j) <3 and Ed () < 3.

17



Since
{Zyel\{i} my (i, aw)| + Zyef\{i,i’} my|{air, aw)| = 6,
Zyef\{z} ml/‘<ai7 Oé,,>‘ 2 37 Zyef\{i’} ml/|<a’i’7al/>| Z 37

one of Case 3.1,..., Case 3.4 is valid.

Case 3.1: (o, ;) = (o, ar) = 0 if my > 1.
It is easy to see that the shape of « is one of the following:

1
1,711
-0

D

1 1
The first four shapes may be expressed by ©::( .

Case 3.2: There uniquely exists ay such that (ax, ;) # 0, (g, ay) #0

and my, = 2.
10 (1
1 1 1 2 WNZ

Then « is
Qg Oy

Hence « has one of the following shapes:

1 1
1 1 1 2 2 21 1 1
O—@@—i rrrrr O=0
2
1 1 1 2 4 3 2 1

Case 3.3: There are different elements oy and oy such that (ag, ;) # 0
and (agr, ay) # 0 and my = my = 2.
2 1 1 2

Then the shape of « is =:0—@OO—0:= and therefore the shape
A QG QG O

2 1 1 2
w(O—0  O—==: obtained by replacing ©--© by O O are one or two

(677 (09%
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of the shapes of basic roots of index 0. Hence the list of the shapes of

2 1 2 2 1 1 2
a is obtained by replacing O—O—0O by O—0O ~G—0 in the shapes

classified in Case 2.2. For example we have

1 1 1 2
1 2 2 1 1.2 3 2 1
Consequently the shapes in Case 2.2 may be regarded as special cases of
those in Case 3.3 except for the first five shapes listed there.

Case 3.4: There uniquely exists a pair ay, and ay such that (ag, a;) # 0,
(agr, ar)y # 0 with my = my = 3.

1 31
Suppose k = k’. Then the shape of o is O—O—O . Then as in Case
1.3 we have L o
{.7 € I| <Oék,04j> < 0} = {sz alla"'7l7'}7

ml1+".+mlr:2mk5—mi_mi/:4.

Since my, > 2, we have {my,,...,my, } ={2,2} or {4}. If {my,,...,my.} =
{2,2}, it corresponds to the first shape in the list below .
If {my,,...,my.} = {4}, the shape of « is obtained by replacing a part
1

1 2 3 4 ) o 3 4
O—O—0O—0O == of the shape of a basic root with index 0 by 1

It corresponds to the second and the third shape in the below.

1 3
Suppose k # k’. Then the shape of o contains O—Q:+ = twice and we

have B
{jel|{aga;) <0} ={i,l1,...,1},

mll+---+mlT:2mk—mi:5

and my, > 2 for v = 1,...,7. Hence {my,,...,my,. } = {3,2} or {b}. If
{my,,...,my,} = {3,2}, Lemma 2.1 iv) assures that the shape of « is the
forth shape in the below.

Suppose {my,,...,my.} = {5}. The shape of « is

ob s
1 3 5 8 2p+3 3 1
rrrrrrrrrrrrrrrrr ROSO)
o Qg g,

1 .
—, which means

with p > 1 and j; = l;. Then 2(2p+3) =242+ (2p+3)&

P
1= Q;ﬁ + z% and we have (p,p’) = (1,5). The shape of « is the last one in
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below. Thus we see the following list:

3 Spectral types of differential equations

In this section, we consider linear differential equations on the Riemann
sphere whose singular points are regular singular or unramified irregular
singular points. For these differential equations, we define spectral types
as tuples of integers representing multiplicities of characteristic exponents
of local formal solutions where we ignore integer differences of character-
istic exponents. We shall classify orbits of spectral types under algebraic
transformations on differential equations, called the Euler transform and
the addition and show the finiteness of orbits with a fixed index of rigidity,
where we note that the index does not change under the transformations.
First we explain that spectral types can be seen as elements of a cer-
tain Z-lattice L which has a group action defined by these transformations.
Moreover we shall see that there exists a Kac-Moody root lattice @ and
the lattice L can be seen as a quotient lattice of (). Then the group action
on L coincides with the Weyl group action on (); and an analogy of the
root system for L shall be defined. As in the previous section, we study the
classification of basic roots of L, in particular we show the finiteness of basic
roots with a fixed index and give lists of basic roots with index 0 and —2.

3.1 Differential equations and spectral types

The detail of this section can be found in [7]. Let K be an algebraically
closed field of characteristic zero. Let Wix] = K|z][0] be the ring of differ-
ential operators with polynomial coefficients and W (x) = K (x)[0] the ring
of differential operators with coefficients in K (x). Moreover W ((z)) denotes
the ring of differential operators with coefficients in K ((x)), the quotient
field of the ring of formal power series K[[z]].

3.1.1 Local structures

In this section we review the local structure of elements in W (z). We fix an
element in W (z), P =>_7" ;a;i(x)0" (an(x) # 0). Here the non-negative in-
teger n is called the rank and written by rank P. For ¢ € K and a monomial
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(x — )0, we introduce the weight
wt o((z — ¢)?0°) := a — b.
The weight of P € W(z) C W((z — ¢)) is defined by

wt o(P) := min{wt .((z — ¢) Y| P = Za” —0)'®, aij # 0}.

For f(x) € K((z — ¢)), weight wt.(f(x)) is defined by regarding f(x) as an
element in W((z — ¢)).
For an integer k, the k-homogeneous part of P € W((x — ¢)) is

P(k) = Z az’,j(l' — c)iﬁj
i—j=k

if P = Zi,j am(x - C)iaj with aij € K.
Similarly we can define wto, by

oo (z20) = b — a.

The singular points of P are poles of 3;((2)) (i =1,...,n). We also say
that oo is a singular point of P if

P(OO) = Z ai(é)(—l‘Qa)Z
1=0

has a singular point at 0. Suppose that ¢ (# o) is a singular point of P.
The wt .(P)-homogeneous part of P equals

Z aij(z —c)'d’

i—j=wt (P)

and then the characteristic polynomial of P at c is defined by

Ce(P)(t) = > agt(t—1)---(t—j+1).

i—j=wt o(P)

If deggpy Ce(P)(t) = rank P, we say that ¢ is a regular singular point of P.
Otherwise, ¢ is an irregular singular point of P. For the point co, we can
define characteristic polynomials, regular and irregular singular points as
well as the above replacing x — ¢ by %

Suppose that ¢ is an irregular singular point of P. For simplicity of
notation, we put ¢ = 0. There exists an algebraic extension K ((azé)) of
K((x)) for a positive integer ¢ and we denote the ring of differential operators

with coefficients in K((l‘é)) by Wy((x)). Then we can decompose the left-
Wy ((z))-module W, ((z))/Wy((x))P as follows.
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Definition 3.1 (Local decomposition (see [8] for example)). For P € W (x)
with an irregular singular point c, there exists the algebraic extension K (((x—
1
c))) of K((x — ¢)), distinct polynomials w; of (x —¢)” @ with no constant
1

terms and P;i(t) € K(((x — ¢)9))[t] for 1 < i < r such that we have the
following.

i) Fach P;(9.) has a regular singular point at c.

ii) We can write P as the least left common multiple of

{PL(¥c —w1),..., Pr(9. —wy)}.
Namely there exist R; € Wy((x — ¢)) such that
P = R;P;(¥. —w;) fori=1,...,r.

Here ¥, = (x —16)8 and for Q(t) = >, o (x)t” € K(((z — c)é))[t] and
we K(((x—c)a))), we put

Qe —w) = 3 (@) (Ve — w)".

v>0

iii) We have the decomposition

Wo((z = 0))/Wy((z = )P = @B W,((x = ¢))/Wy((z = ) Py — wi)
i=1
as Wy((x — ¢))-modules.

We call the decomposition in iii) the local decomposition of P at c. More-
over we call P;i(¥. —w;) € Wy((x — ¢)) local factors and w; the exponential
factors of P;j(¥. —w;) for 1 <i<r.

If the local decomposition at ¢ is obtained in Wi((x —¢)) = W((z — ¢)),
we say that c is an unramified irregular singular point. Otherwise, c is called
a ramified irreqular singular point.

We introduce the notion of spectral data. Let P € W((x)). We regard
the left W ((x))-module Mp = W ((z))/W ((x))P as the K((z))-vector space
of dim Mp = rank P. For a basis {u1,...,u,} of Mp as K((x))-vector space,
we can represent the action of ¢ = x0 by the matrix as follows. For u € Mp,

there exists A = (ai;)1<i<n € M (n, K((z))) such that
1<5<n

n
Yu; = E iU
j=1

Moreover if 0 is a regular singular point of P, there exists a basis such that
we can take A € M(n, K). We call this matrix A € M(n, K) a local matriz
of P at 0. For any other regular singular point ¢ € K and oo, we can define
a local matrix in the same way.
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Definition 3.2 (Spectral data). Fix mq,...,ms € Z=o and A1,..., s € K
which satisfy

Ni—=Aj gL (1 F )
We say P € W(x) has the spectral data

{()\1, e ,)\5); (ml, e ,ms)}

at ¢ if P has a regular singular point at ¢ and satisfies the following.
i) The characteristic polynomial is

s m;—1

Ce(PY®)=CT[ I (t— i +1))

i=1 j=0

for a constant C.
ii) A local matriz of P is a semisimple matrix.

Here we note that condition ii) does not depend on the choice of local
matrices.
3.1.2 Spectral types and the Euler transform

Fix P € W (x) satisfying the assumption below.

Assumption 3.3. We assume that P € W (x) satisfies the following.

i) All singular points of P, written by co = 0o, c1,...,¢p € K, are regular
singular or unramified irreqular singular points.

ii) Denote the set of local factors of P at ¢; by

{Pi,l(ﬁcz‘ - wi,l)) ey Pi,ki (1961 - wl,kl)}

Then there exist positive integers m; ;s and X js € K fori=0,...,p, j =
L. ki, s=1,...,1;; such that N js— Nijs € Z if s # s and P; j(¥) have

spectral data

{Nigts s Xigige, )i (Magins - omiji, )}

respectively. Here w; j are the exponential factors of the corresponding local
factors.

Put

A(P) = ((Nig1s-- -5 Xijidi,)) 0<i<p »
1<j<k;

m(P) = ((mij,.,Miju,)) o<i<p -
1<5<k;
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The index of rigidity is defined by

P lij L
idxP:=-%" Y d(.7) (Z m]) (Z m]>
i=0 1<j#5'<k; =1 s=1 (25)
ki

P li,;
+ Z Z zj: m?,j,s — (p — 1)(rank P)?

i=0 j=1 s=1

where d;(j,j') = —wte,(wij —w; ) for i = 0,...,pand j,j =1,...,k;.
Here we notice that these d;(j, ;) satisfy

d;(j,j") = 0 if and only if j = j
di(3,7") = di(4,5"), (26)
di(j1, j2) < max{d;(j1,j3), di(j2. j3) }

forall i =0,...,pand j, /, j1, jo, j3 € {1,..., ki}.

Remark 3.4. The index of rigidity is defined by N. Katz in [4] and can be
computed from local structures of differential equations (see Proposition 3.1
in [1] for example). One can check that our definition of the index of rigidity
coincides with the original one.

Remark 3.5. Suppose P € W (x) satisfies Assumption 3.3 and put Z; :=
@?":1 Zli. If p > 0 and there exists ig € {0,...,p} such that ki, = 1 and
lig1 = 1, then c;, is not a singular point of Ad (e W01 )Ad ((z—c4y) ~No11) P.
Here the operator Ad (f(x)) is defined in Definition 3.8. Hence in this case,
we identify m(P) and prig o oym(P). Here preg g0y Pio Zi —
®i€{0,...,p}\{io} Z; s the natural projection.

Thus for m(P), we assume k; -l i, > 1 for alli=0,...,p if p> 0.

Definition 3.6 (Spectral type). Choose arbitrary integers p € Z>q, k; €
Zso (1 =0,...,p) and l;j € Z~o (i =0,...,p, j = 1,...,k;). Fiz integers
di(4,7") € Z>o satisfying the relation (26) and take a tuple of positive integers

p ki
l, .
m = ((mij, .- miju,)) o<icp € EDEDZLY.

1§.7§kz i=0 j:l

Then we call m with the integers (di(j,j')) o<i<p a spectral type.
1<5,5'<k;
The spectral type of P € W(x) satisfying Assumption 3.3 is defined by
m = m(P) and di(j,j") = —wte,(wij — w;j). A spectral type is called
irreducible if there exists an irreducible operator P € W (x) with the spectral
type which satisfies Assumption 3.3.
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In the remaining of this paper, we investigate orbits of spectral types
under the action of the twisted Euler transform which is defined below. The
following is one of our main theorem which tells us that the finiteness of
Euler transform orbits of spectral types with a fixed index of rigidity.

Theorem 3.7. Fix an integer r > 0. If r > 0, there exist only a finite
number of orbits of irreducible spectral types with index of rigidity —r under
the action of twisted Euler transforms.

Moreover there exist a finite number of orbits of indivisible irreducible
spectral types with index of rigidity O under the action of twisted Euler trans-
forms.

Here we say that a spectral type m = ((mm’l, .. vmi,j,li,j)) o<i<p With in-
COILG<k;
tegers is indivisible if the greatest common divisor of {m; js |i=0,...,p, j =

1,...,]%', SZl,...,liJ} 1s 1.

This theorem follows from Theorem 3.15 and Theorem 3.24 which appear
in the latter sections.
We give a brief review of algebraic transformations on W[z] and W (x).

Definition 3.8 (Addition). For f(x) € K(x), define

Ad (ef F@dzy. W) —  W(x)
T — T .
0 r— 00— f(z)

In particular,

for ¢, A € K is called the addition at c with the parameter .

Definition 3.9 (Fourier-Laplace transform). The Fourier-Laplace trans-
form is the K-algebra automorphism of Wx],

L: Wz — W]x]
x — =0
0 — T

Definition 3.10 (Primitive component). We say that P = Y1 ,a;(2)0" €
W x| is primitive if

i) gedgg{ai(z) [i=0,...,n} =1,

ii) the highest term a,(x) is monic.

For P € W(x), there exist f(z) € K(x) and the primitive element P €
W x|, and then we can decompose P by

P = f(x)P,
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uniquely.
We denote the primitive element by Prim(P) and call this the primitive
component of P.

Definition 3.11 (Euler transform). The Euler transform of P € W (x) with
the parameter \ is

E(M\)P := L oPrimo Ad () o £L7! o Prim(P) € W{z].

For P € W (x) satisfying Assumption 3.3, we consider following special
Euler transforms.

Definition 3.12 (Twisted Euler transform). Let P € W (x) satisfying As-

sumption 3.3. Define J := @F _o{l,-.. ki}. Then for 5= (jo,- - jp) €T,
the twisted Euler transform E(j)P is

PGP = [T Ad () T] Ad (0 = 1)
1=0 =1

p
o B(1 = A(P;)) [T Ad (& — e)Has HAd Wi
i=1
where
P
Z)\’]“
=0

The following theorem gives explicit changes of spectral types induced
by the twisted Euler transform.

Theorem 3.13 (Theorem 3.2 in [7]). Let P € W (x) satisfying Assump-
tion 3.3. Choose j = (jo,...,jp) € J and suppose \(P) is generic (see |7,
Theorem 2.18]).

Then E(j)P € W(z) also satisfies conditions in Assumption 3.3. If the
spectral type of P, = = E(j)P is m(P;) = ((mi,ﬂ,...,mimﬁj)) 0<i<p With

. 1<5<k;
(di(4,7")) o<i<p , then we have
1<y4,5" <k;
i g1 = mij1 +d(j) if j = ji,
Mijs = Mij,s otherwise,
T/ e .o
di(4,') = di(j, 5")
where
p kz ll i
:Z Wtcz w; j — W j,) +1 mes
=1 j5=1 s=1
ko lo.;
+ Z(—Wtco (wo,j — wo,jy) — Z mo,j.s Z Mijii-
=1
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3.2 The Lattice of spectral types and the root system

Theorem 3.13 shows that twisted Euler transforms E(j)(j € J) induce
transformations of the spectral type m(P) of P € W(x) satisfying Assump-
tion 3.3. From these transformations we shall construct a transformation
group on a certain lattice where m(P) can be seen as an element in this
lattice. Moreover we shall see this lattice with the transformation group is
a quotient lattice of a Kac-Moody root lattice.

3.2.1 The Lattice of spectral types

Choose arbitrary integers p € Zs>o, ki € Zso (i = 0,...,p) and [;; €
Zso (i = 0,...,p, 7 = 1,...,k;). Fix integers d;(j,j') € Z>o satisfying
the relation (26).

Then we consider the following Z-lattice

L= {((mij1,- - miju,)) osicp € EDEPZH

1<j<k;

i=0 j=1
ko loj kp lp,;
‘ : : : :movjvs == : : : :mp7j78}'
j=1 s=1 j=1 s=1

We denote the set of positive elements in L by

p ki
v - e @
i=0 j=1
and define the rank of m = ((mij1,...,mijy, ) o<i<p € L by
T <<k
ki lij
rankm := Z Z M js
j=1 s=1

for any ¢ = 0,...,p. Note that the definition of rank m is independent of
the choice of 1 =0, ..., p.

Then we define transformations on L as an analogy of the transfor-
mation of spectral types given in Theorem 3.13. Namely, for each j =
(4o, J1s- -, dp) € T == B _o{1,...,ki}, we define the lattice transformation
on L,

o(g): L — L
m = ((miji, - 0i51,)) o<icp = ((Mig1s- o Migi,;)) o<i<p »
1<5<k; 1<5<k;
where
Mij1 = mi 1+ d(m;j) if (i,7) = (i, i),
Mijs = Mijs otherwise
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and
l.

l/,jl

p  ky
dm; ) =35 (de (i) + 1) > mi g
s=1

i'=1j'=1
ko lo 57 »
.
+ > (do(f' do) = 1) D mors — > mir i,
=1 s=1 1'=0

In addition, for ig = 0,...,p, jo = 1,...,kiy, so = 1,..., Ly 5, — 1, we
also define permutations on L,
a(io, jo, 50): L(P) — L(P)
Mg, 50,50 = Mig,jo,s0+1
Mig,jo,s0+1 7  Mig,jo,s0
M j.s —> mijs  (i,7,8) # (0. Jo, 50), (G0, Jo, S0+ 1).

Then L has the action of the group W generated by these o(j), o (i, 7, 5),
ie.,

W=

(0(7),0(i,4,8) | €T, i=0,...,p,j=1,... ki, s=1,....5i; —1).

We call L with W action the lattice of spectral types and denote it by
(L,W) or shortly by L.

3.2.2 The lattice of spectral types as a quotient lattice

We shall explain that the lattice of spectral types (L, W) can be seen as a
quotient lattice of the Kac-Moody root lattice Q1 with the index set

I = jU{(i,j,S) ‘ 1 =0,...,p, j = 1,... ki, s = 1,...,[1'7]‘—1}

and the basis {oy | t € I}. Namely, Qr := @,c; Za;. We define the sym-
metric bilinear form (, ) on Qp,

<o¢j,0(§.,> =2 — Z (dz(]w]z/) + 1)7
0<i<p
JiFJi

( > -1 ifj;=7and s =1,
Qs Qg5 g)) i=
3 039) 0  otherwise,
2 if(i,5,8) = (.5, 5),
<O[(7;,j75)704(7:l7jl75/)> = —1 if (7,,]) = (il,j/) and ‘S — 3/’ = 1,

0 otherwise.
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Here j = (jo,...,jp),j’ = (Jg,---»Jp) € T Let Wy, := (oy | t € I) be the
Weyl group of Q;. Then we have the surjection ®: Qr — L by which W,
action on @, coincides with the W action on L.

Theorem 3.14 (Theorem 3.3 in [7]). Define the Z-module homomorphism

P QL — L
as follows. For
p ki Lij—1
=) miag ) > D MisOGe) € QL
jeg =0 j=1 s=1
the image ® (o) = ((Mij1,. .., Mij,,)) o<i<p s given by
1<j<ki

myj,1 = E : ms — M(i,51),
{jeTji=4}
Mijs = Mijs—1) — Mis) Jor 2< s <lij.

Here we put my; ji, ,y = 0. Then we have the following.

i) The map ® is surjective.

ii) ® is injective if and only if #{i € {0,1,...,p} | k; > 1} <1.

iii) The Weyl group action on Qr, corresponds to the action of W on L.
Namely, we have

O(0:a) = a(j)P(a) (@€ QL)
(I)(U(i,j,S)O‘) =o0(i,7,8)P(a) (€ Q).

iv) If a € Ker @, then (a, ) =0 for any f € Qp.
v) Let m € L. Then we have

(o, 05) = —d(m;j) (@€ @} (m), j€T)
vi) For a € <I)_1(m), we have

P Li,j Ligr
o) ==> 5 ) (Lm0 i)
s=1 s'=1

1=0 1<j#5'<k;
ki

P li
+ Zzzj:mfjs — (p — 1)(rank m)?.

i=0 j=1 s=1
Form vi) in this theorem, we define the index of rigidity of m € L by
idxm = idxa = (o, a)

for a € ®~!(m).
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3.2.3 ®-root system

We shall define the ®-root system of (L, W) which is an analogue of the root
system of Qp .
First consider the following subset of L,

® _
A = U W (a;),
jeT
i.e., the union of W-orbits of ®(ay;), which is called the set of ®-real roots.
We also consider the subset
mi,j,l>mi,j,2>"‘>mz‘,j,li’7’7d(m§5)>0}

. _ + N
F~ = {m €L \ {0} ‘ for all i=0,...,p, j=1,....k;,J€T,
WmcCL*

Then the set of ®-imaginary roots is
AL =WFPU-WF?®.
We call
A% = AP uAY
the set of ®-roots.

3.2.4 Spectral types of differential equations and root systems

We explain that for P € W(z) satisfying Assumption 3.3, the spectral type
of P can be seen as an element in the lattice of spectral types (L, W).
Suppose P € W (z) satisfies Assumption 3.3. If we put

di(j§,7") = —wte, (wij — w;j)

fori=0,...,pand j, 7/ =1,..., k;, then d;(j, ;') satisfy the relations (26).
Thus we can define the lattice of spectral types (L, W) and see m(P) €
L. Then the index of rigidity of P equals that of m(P) € L, namely,
idx P = idxm(P). Also rank P = rankm(P) as well.
Theorem 3.13 shows that the spectral types of P, = E ()P (j € J) are

obtained by the transformation o(j) on L, i.e.,

m(P;) = o(j)m(P).
Hence we can associate an element in A® to P as follows.

Theorem 3.15 (Theorem 3.11 in [7]). Suppose A(P) is generic (see |7,
Definition 3.8]). If P is irreducible in W (x), then we have the following.
i) m(P) € A®.
i) If idxm(P) > 0, then idxm(P) = 2.
iii) We have
m(P) ¢ {A;?; z:f ?dxm(P) =2,
A2 if idxm(P) <0.
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3.3 A classification of basic pairs

At the end of §3.2, we see that the spectral type of the irreducible operator
P € W(x) satisfying Assumption 3.3 corresponds to an element in A%+ =
A®NLT. By the definition of A®, any element in A®* can be reduced to an
element in {®(a;) | j € J}UF® by W action. This means that m(P) can
be reduced to an element in {®(c;) | j € J}U F® by the Euler transform.

Thus to see Euler transform orbits of spectral types, it suffices to see
elements in F'® L {®(a;) | jeT}.

The differential operator corresponding to an element in {®(a;) | jeJ}
is an obvious operator of the first order. Hence we study F®.

Definition 3.16 (Basic pair). Let (L, W) be a lattice of spectral types with
W -action. Denote the corresponding Kac-Moody root lattice by Qr, and the
surjection by ®: Qp — L defined as in §3.2.2. We also define the subset
F® C L as in §3.2.3.

Choose an element m = ((miJJ, . ,mi,j,lij)) o<i<p € F® and suppose
<<k,

mijs 70 foralli=0,...,p, j=1,...,kjands=1,....,1;;.
Then we call (m, L,W) the basic triple. We usually omit W and call
(m, L) the basic pair.

We define the shape of a basic pair (m, L).

Definition 3.17 (Shape of a basic pair). Let (m, L) be a basic pair. The

shape of (m, L) is the set of shapes of elements in ®~(m) C Q.

Example 3.18. For example, supposep=1, ko =k =2,1;; =1 (i=0,1

and j = 1,2), do(1,2) = dq(1,2) = 1. Consider m = ((m; ;1))o<i<i such
9=t

<j<2
that m; j1 =1 for all i, j. Then (m, L) is a basic pair and its shape is

a 1—a

l—a X a (a€Z), (27)
where we simply denote {xq | a € Z} by x4 (a € Z).

Suppose p = 0, ko = 4, do(i,j) =2 for 1 <i < j <4 andlp, =2 for
1<v <4 Ifmg; 1 =1for1<j <4, the shape of (m, L) equals

1m1 | (28)
1 1

Now we prepare the following lemma to have an element in ®~!(m) OQJLF.
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Lemma 3.19. Let (mm) o<i<p be a tuple of p+ 1 partitions of a positive
1<j<k;
integer n, namely, n, p, m; ; and k; are positive integers satisfying
mi1+ -+ Mg, =N (] :0,...,])).

Then there exist non-negative integers My, .. ., for 1 <v; <k and 0 <i<p
such that

k;
Z Z mllo,ljl,...,l/p = My, (0 S ? S D, 1 S Vi S kl)a
0<j<pr;=1
J#i

Moo " V01 #0 = (or

M, 1 Mk, k, 7 0
Proof. Put
Mug,.., = F1k €{1,2,...,n} |
mj1+ -+ My, -1 < kE<mj oMy, for j =0,...,p}.

Then the lemma is clear. Here we note that m 1 = min{mg1,...,mp1}

and 1g,,... k, = MIN{Mo ;- -, Mp i, }- O

Definition 3.20. Fiz m = ((mi,j,l,...,mi’j,li,].))logég € Lt. Putn =
<j<ki

rankm and m;; = 22;31 m; js. Applying Lemma 3.19 to m and putting

~ 5 li,j
m; =My, (1= (V0,...,1p)) and my ;) = 34261 Maje, we define

ki li;—1

P
a(m) := Z msas + Z Z Z M5 j,5) i j,s) € &' (m)NQ;.

jeg i=0 j=1 s=1
The following lemma gives some properties of a(m).

Lemma 3.21. Retain the notation in Definition 3.20.
Let I be the index set of the basis of Qp, :

I=JU{(,4,s)|i=0,....p,j=1,.. . kis=1.. . 1,—1}.
Put Cpyy = supp a(m) and define
I'={iel|a; €Cn}, Ip:={tel]|{a(m),a;) =0}, I :=1\I.

Assume ko > k1 > -+ > kny—1 > kny = -+ =k, = 1. Here N is a
non-negative integer. Put jo = (1,...,1) € J, j1 = (ko,..., kp) € J.
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i) The element a(m) is indivisible if m is indivisible.
ii) We have m; >0, m; >0 and

(a; , 05 ) <2 2N,

p
max{ko, ..., kp} SH#UINT) <1+ (ki —1),
=0

Z m; = rank m.
jeIng
iii) The Dynkin diagram of a subset of Cy, is never equal to Df«}) with
n > 4.

Preceding to the proof of Lemma 3.21, we remark the following.

Lemma 3.22. Let j, = (j,.0,---,Jup) € J forv=1,2,.... Then we have

(a5, 05,) <2=2¢{i € {0,1,...,p} | j1q # J2,i}, (29)
(a5, 05)) =(oz,0;) =0 = (o, 0;) # -1 (30)
Proof. Definition 3.20 directly shows (29). Suppose —1 < (ajy,ozj. ) <0

for 1 < v < v/ < 3. Then there exists | € Z>o such that ji; = j,; for
i €{0,...,p}\ {l} and therefore (30) follows from the relation (26). O

Proof of Lemma 3.21. The claims i) and ii) follow from Definition 3.20,
Lemma 3.19 and (29).

iii) Suppose the Dynkin diagram of a subset of Cy, is DS) withn >4 :

aig QiS
Q. Oy (67}
i, 11 17 19 Qig

Define ¢, = (i, i,). For i, € I put i, = (ju0,...,Jup) if i, € J and
put i, = (ky, ju, sy) otherwise. The proof of Lemma 3.22 shows that there
exists [ with 0 <1 < N such that j,; = j,/; if i« # 1 and i,, i,y € J.

Suppose i1 € J and i2 € J. Then (30) shows #({i3,4,i5,i6} N T) < 1
and there exists i, ¢ J such that i, = (k,,j,,1) with k, # [ and j, = j1 4,
Then ¢, 1 = ¢, 2 = —1, which contradicts to the Dynkin diagram.

Suppose i1 ¢ J and iy € J. Then {is,is} N J # (. We may assume
is € J and then the claim i) shows i5 ¢ J and ig ¢ J, The same argument
as above shows c35 = —1 or c36 = —1, which leads a contradiction.

Lastly suppose i1 = (k1,71,1) ¢ J and is ¢ J. We may assume i3 € J
and i5 € J. Then there exists «;., € J such that iy # i3, i7 # i4 and
c1,7 = —1. Since ¢17 = ¢13 = —1, we have k1 # [, j1 = ja, and c15 = —1,
which leads a contradiction. ]
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We shall show some properties of a(m) when (m, L) is basic.

Lemma 3.23. Retain the notation and the assumption in Lemma 3.21.
Suppose (m, L) is basic.
i) Cm 1s connected.
ii) Put o/ =3, mia; for a proper subset I' & I. Then
idx o/ > idx a(m).
iii) We have

(s ) = idxm =2 for iy iz el (31

and the equality holds if and only if the shape of a(m) is

m o m .
O—0O m=11if k#2) (32)
with k = % — idx m.
iv) We have
N <2+ 1idxm| (33)

and the equality holds if and only if the shape of a(m) is the one in (32)
with k = 2N — 2.

v) Suppose (m, L) is basic. Let o, iy, ..., 04, be a constant connected
sequence in Iy (k> 1). Then K <4 and 1 < N < 2.

m m
If K =4, then N =1 and the shape of a(m) is i:i .

m m

Suppose N =2 and K = 3. Then iy = 52 or iy = j’g by denoting
Jo = (1,k1,1,...,1) € T and j3:= (ko,1,1,...,1) € J.
Moreover iy ¢ J and iz ¢ J.

Proof. i) We say that two elements o and o’ in Cp, are connected in Cy, if
they belong to a connected component of the Dynkin diagram of Cy,. Note
that o and o are connected in Cp,.

Fix o s with 1 < s <I; 5 — 1. Then there exists 7 = (o, ... , Jp) such
that o € Cm and j; = j. Then «a; ;) and o are connected in Cy,.

Let j € J with a; € Cm. If N > 3, then (o, a;) # 0 or (o, a;) # 0,

which means o and o are connected in Cp, and therefore Cp, is connected.

Hence we assume N = 2 and (a; ,o3) = (o5, ;) = 0. Then j = jp or
j=J
Suppose j = ja. Then o, ¢ Cm, which follows from Lemma 3.19. Since

a(m) is basic, there exists a € Cm satisfying (a, o) <O0.
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Suppose a = a;, with 7ed. i =0,...,1) orj = (jo,k1,1,...,1).
Here 1 < j; < ky and 1 < jo < ko, respectively. If j' = (1, jl,.. )
« and o are connected in Cp,. We have the same conclusion when j° =
(jo, k1,1,...,1).

Supposea:a(ws) Then s = 1. If i > 2o0ri =0, 5 =1 and
(agapysay) <0 Ifi=1, 7=k and (o411, ;) < 0. Hence a and a3
are connected in Cyy and so are 3 and o i

In the same way as above we have the same conclusion when j = Js.
Thus we have the claim.

If N =0, #J = 1 and the Dynkin diagram of Cy, is star-shaped and
hence connected.

Lastly assume N = 1. If there exists ¢ € {2,...,p} such that [;; > 1,
then (ozj., a(,1,1)) = —1 for any 7 € INJ and therefore the Dynkin diagram
of Cy is connected. Hence we assume [;; = 1 for all ¢ € {2,...,p}.
(a5, ) = 0 for any j € (INT)\{jo}, then (a(m),a;) = 2m3—m(0:1’1) > 0,
which contradicts to the fact that «(m) is basic. Hence there exists j € INJ
satisfying (o , ;) < 0. Then the relation (26) assures (aj,a;) < 0 or
(a;,05) <0 for any ' € (INJ)\ {jo, 7}, which proves that aj and as, are
connected in Cy, and moreover Cy, is connected.

ii) The claim easily follows from the definition of the index and the
connectedness of the Dynkin diagram of Cy,

iii) We may assume (g, , i) < —2. If m;; < my,, we have

idxm < (« ( )s My @iy )
< m + miymiy (i, iy )
< m? (1 (g, @iy)) +migy (o, aiy)
<m? (1 + (o, i) + m? (i, qiy ),
idxm 1

(Quiy, Quiy) > W T

If m;; = m,,, we have

idxm < < (m) mi104i1> + (a(m) miz()‘i2>
< 2m? L+ 2my gy (i, i) + 2m22,
1dxm
L L}
(aiy, aiy) 2 2m, M,
Hence we have (q;,,a;,) > sidxm — 2 and the equality implies m;, = m;,
and moreover m;; = 1 if idxm # 0. It follows from the claim ii) that
the equality implies that the shape of a(m) is the one in (32) with &k =
2 — idxm.
iv) Since (a; ,o; ) <2 — 2N, the claim in iii) implies that in iv).
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vV Pt A=INJ and B=1\ A.

Let (7,7,8) € B with s > 2. Then m; j ;1) > m(; ;s > Mijs+1 > 0 and
{i € I'|{ajs), i) <0} C{(i,4,s—1),(i,7,s + 1)}. Hence i, # (i, 4, s) for
v=1,..., K.

Note that (o 1y, @ j7,1)) = 0 for two different elements (i, j, 1) and
(¢/,4',1) of B. Hence there exists no constant connected sequence in B.

If N =0, then #J7 = 1 and it is clear that there is no constant connected
sequence.

Suppose N > 3. Then a; ¢ Io for v = 0 and 1 and moreover (a3, a; ) <
—2 or <045.,0431) < —2 for any j € A. Hence there exists no constant con-
nected sequence in Ij.

Suppose N =2 and K = 3. If j € A\ {Jo, J1, 2,3}, then (a,05)) < =2
or <a]<, oz31> < —2. Hence is = jo or iy = j3. Since {jg,js} ¢ A, the
length of the constant connected sequence in Iy is not larger than 3 and the
corresponding claim in iii) is valid.

Lastly suppose N = 1. Suppose K = 2 and i9 € B. Then i3 =
(J1,1,...,1) € A and iy = (0,41,1) or is = (4,1,1) with @ > 0. If ip =
(0,71,1), then m;, > mj,, which implies iy = (i,1,1) and (a3, os,) < 0 for
any j € A.

Fix a constant connected sequence in Iy. The number M of the elements
«; in the sequence with ¢ € B is not larger than 2. If M > 0, the number of
the elements «o; with j € A in the sequence is not larger than 2 and therefore
K <4. If M >0 and K =4, then M = 2 and the shape of o(m) is the one
given in v).

Suppose M =0 and K > 4. Put i, = (j,,1,...,1) € Aforv=1,..., K.
Since (@, ;) = 0 we have (a,, a;,) = 0 if (a4,,a5,) = 0. Hence K = 4
and (o, ,@;,) < 0 and the condition i1 € Iy shows the claim v). O

3.3.1 The finiteness of basic pairs

We show the finiteness theorem which is an analogue of Theorem 2.2.
We say that a basic pair (m, L) is indivisible if the greatest common
divisor of {m; s |t =0,...,p, 5 =1,..., ki, s =1,...,l;;} is 1 for m =

(M1 migu, ;) o<izp -
1< <k;

We also say that a basic pair (m, L) is reduced when we have l;1 > 1 for
all i =0,...,p satisfying k; = 1 (cf. Remark 3.5).

Theorem 3.24 (Corollary of Theorem 2.2). Fiz an integer r > 0. If r >
0, then there exist only a finite number of reduced basic pairs (m, L) with
idxm = —r. Moreover there exist only a finite number of reduced indivisible
basic pairs (m, L) with idxm = 0.

Proof. Theorem 3.24 and Lemma 3.23 assure that there are only finite possi-
bilities of shapes of a(m). Hence there exists a positive integer n, such that
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rankm < n,. Hence the theorem is reduced to the following lemma. O

Lemma 3.25. Fiz integers n > 0 and r. Then there exist a finite number
of reduced basic pairs (m, L) satisfying rankm < n and idxm > —r.

Proof. Let (m, L) be a reduced basic pair satisfying the assumption. Since
S _ier—(>uy eu)2 < —2ifv>2ande, € Zsg foru=1,...,v, we have

u=1
p lij byt
idx m + Z Z di(3,5") (Z mi,j,s) (Z mi,jhs’)
s=1 s'=1

i=0 1<j#5' <k;
ki l.Y .

p ¥
= Z( ng@s — (rank m)2> + 2(rank m)?

i=0 j=1s=1
< —2(p+1) + 2(rank m)?

by putting m = ((miJJ, . vmi,j,li,j)) 0<i<p , which implies
1<5<k;

2(p+1) <r+2n°
di(j,j") < 2n® —2(p+1) +r
<mP4r—2 (0<i<p 1<j<j <k).

This shows the lemma. O

3.3.2 The classification of basic pairs with idx 0

We shall give lists of shapes of basic pairs of index 0 and —2. First we
consider basic pairs of index 0.

Theorem 3.26. If a basic pair (m, L) satisfies idx m = 0, then its shape is
one of the following.

m

2m 2m
m 2m |3m 2m m m 2m 3m |4m 3m 2m m
3m m
m 2m 3m 4m 5m |6m 4m 2m m 2m m



Here m are arbitrary elements in Z~g. We simply write sets {z, | a € Z}
and {z} by x4 (a € Z) and x, respectively. The sequences of integers written
under the shapes except for star-shaped ones stand for the corresponding
basic pairs (m, L).

Proof. Retain the notation in the proof of Lemma 3.23. We may assume m

is indivisible. If N = 2, the shape of a(m) is Cl):é . Then rankm = 2
and the shape of (m, L) is the last shape in the above list with m = 1.
Then we may assume N < 1 and the shape of (m, L) corresponds to the
shape of a(m). Hence the claim in §2.3, Lemma 3.21 and Lemma 3.23 show
the theorem. O

Remark 3.27. We shall explain the notation expressing (m, L) in Theo-
rem 3.26. The number of parentheses () represents the number d;(j,j'). For
instance, if (m, L) is written by

S g e Mg ) (M grami jra -

then we can see the double parenthesis (()) between my ;1 ..., andm;jiq .. ..
This means d;(j,j') = 2. Let us see an example. Consider a basic pair
(ma L) where p= 1; (k()akl) = (273)7 (l0,17l0,27l1,11l1,2al1,3) = (172717172)
and (dy(1,2),d1(1,2),d1(2,3),d1(1,3)) = (1,1,2,2).

Then m = ((mj1,---, M4 ;) 0<i<p 18 written by
1<j<k;

(mo,1,1)(mo,2,1m0,2,2), ((M1,1,1)(m1,2,1))((m1,3,1m1,3,2))-

Remark 3.28. In the above list of shapes, we omit the corresponding (m, L)
for star-shaped diagrams. For these cases (m, L) are obtained as follows.
no,1 _No,2

no

N1 N2
N\

Consider a shape .. and put m; 1y = No—Ni 1, M j41) =

O

n22

_ _ D
Nij = Nij+1, M(i0) = ZO%];E]? ng1 —no and mgy = S5 g ni1 —ng. Then
A

the shape corresponds to the following 5 types of (m, L) with 0 <1i < p.

m(071)m(0,2) ey m(171)m(172) ey ey m(p71)m(p72) ey
m(o)no, (m(oyg)m(ojg) .. ) . (m(pVQ)m(pB) .. .),
m(i,o)m(i’l) SN (m(ovg)m(og) . ) e (m(l',lz) .. .)(m(i+172) . ) SN

((m(i,l)m(i,2) - -))((m(o,z)m(o:,) N (m(i—2,2) - -)(m(z’+1,2) c) ),

((no))((mo2ym@3)---) - (MEp2ymps) - ).
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In [12], K. Takemura obtains a part of the classification in Theorem 3.26
under some conditions (see Proposition 4.3 in [12]).
3.3.3 The classification of basic pairs with idx — 2

We shall give a classification of basic pairs of idx — 2.

Theorem 3.29. Let (m, L) be a basic pair with idxm = —2. Then its
shape is one of the following.

Case 1: a l1—a 1-a a
QP OGP &
-e ke een o[ 3] wen
((1)((1)), (1)(1) (1)(1), (1)(1), 11

2—a 2—al a a

(a € Z) O=0—0—0=0 (a€)
(2)(2),(2)(11)

[\
|
Q —
200
—_
[\ —
|
S

—~
—_
~—
—~
[
—_
~—
—~
[
~—
—~
[
—_
~—

a b 2—a-—1b 1
'}%}{(’ woezy Tlog 2 dze e
1-— 0\/‘ +b-1 (2)(2) (Sb(lel?))
(1)(1)(1),(2)(1) 7
1
1 1 1 1 1

(M) (W))(((1))), 11

39



((2))((2)) ((11))((11))
((2))((1 )) 22 ((11))((1>) 111
((2))((2)> 211 ((11))((11

((1)(111))

(2)(2),22,211 (11)( )22 31 ((11)(1)) 21 111 (1)(111),22,22
(2)(11),22,22 ),111,111 (2)(2),31,1111

((M)((
( )( ) 11 11 11 ((1))((1)),11,11
(D(1)(1), 21,21

Here we simply denote the sets {xq | a € Z} and {y} by x4 (a € Z) and y,
respectively. The sequences of integers written under the shapes except for
star-shaped ones stand for the corresponding basic pairs (m, L).

Retain the notation in the previous section. To prove the theorem we
may assume kg > k1 > --- > kny_1 >kn=---=kp,=1land In1 > Inf11 >
-+ > 1,1 > 1. Note that Lemma 3.23 iv) assures N < 2.
Then the proof of the theorem deduced to the following three lemmas.

Lemma 3.30. Suppose N = 2. Then the shape of a(m) is one of the
following.
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1 1
221111Cl>:i2—%)1221
o=0—"0 O=0=0

Moreover the shape of (m, L) is one of the shapes in Case 1 in Theorem 3.29.

Proof. Use the notation in Lemma 3.23.

First suppose k9 > 3. Then there exists j = (2,[,1...,1) € JnI. If
L# 1, (5,05 ) < =2 If 1 # ki, (a;,05) < —2. Since <a3 as; ) < 2 the
lists in §2.4 show that the shape of a(m) equals E) 11

a-
J

If p > 3, the Dynkin diagram of {ajo, L Q211) (3,1,1)} equals m

ajo ajl

with u = —(ajo 5 .) = 2, which contradicts to the lists in §2.4.

Next suppose kg = k1 = 2 and p < 2. Then #(INJ) < 3 and the support
of a(m) is a subset of the set of simple roots whose Dynkin diagram is

Q(1,1,1)

@(0,1,1)

where s,t >0, u=s+t+2>2and j = (1,2,1...,1) or j = (2,1,1,...,1).
Here the Dynkin diagram in the case j = (2,1,1...,1) is similar as above
and hence we assume j = (1,2,1...,1). Then the lists in §2.4 tell us that
the shape of a(m) is one of the following.

02101
1 2 1
Yo 71 “(1,2,1)
Oé}- 1
2 2 1 1 2 2 1
D) O0—0—-o0 F)
QG A5 A1,2,1) Qs 21y 0(1,22)
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Here s =t = 0 when ms > 0 and the simple roots indicated in the shape
are examples corresponding to the shapes.

Since o € @, and () = m, m is uniquely determined from «(m) for
fixed L. Then if we write the shapes of (m, L) from the shapes A), B),
(), D), E) and F), then we have the shapes in Case 1 in Theorem 3.29,
respectively. Here we note that the shapes of o(m) labeled by C') correspond
to a single shape of (m, L), which is the third one in Case 1. O

Next consider the case N = 1. We notice that & is injective in this
case. Hence the shape of (m, L) consists only of the shape of a(m). Put
Jo :={1,...,ko} for simplicity.

Lemma 3.31. Retain the notation above. If max{dy(j,j') |7, j' € Jo} > 3,
the shape of a(m) is one of the shapes in Case 2 in Theorem 3.29.

Proof. Lemma 3.23 proves max{dy(j,j’) | j, ' € Jo} < 4 and the equality
means that the shape of a(m) is the first one in Case 2.

Suppose max{do(4,5") | j, 7 € Jo} = 3. We may assume dy(1,2) = 3.
Put j, = (1,1,...,1).

A1)
If p > 1, the Dynkin diagram of {ozj., @, a(1,1,1)} equals A

Oéjl @32

and the lists in §2.4 show that the shape of a(m) is the last one in Case 2.
If ko = 2, the shape of a(m) is O~ O=0O--O and the lists in §2.4 show

o~ O

e

that the shape of a(m) is the second one in Case 2.

Suppose ko > 3, Then dy(1,3) = 3 or dy(2,3) = 3 by the relation (26).
Hence the lists in §2.4 show that kg < 3 and moreover that if kg = 3, the
shape of a(m) is the third one in Case 2. O

Lemma 3.32. If max{do(j,5") | 4, 7/ € Jo} < 2, the shape of a(m) is one
of the shapes in Case 3 in Theorem 3.29.

Proof. Define the coset decomposition of Jy by the following relation: for
distinct j, j' € Jo, j and j' are in the same coset if and only if dy(7, j') = 1.

Put Jo = JoU{(4,1,1) | j = 1,...,p} and define the coset decomposition
Jo = 1%, J(g) so that the coset is one of the cosets of Jo or {(j,1,1) | j =
1,...,p}. We may assume #J(1) > #J(2) > --- > #J(¢q) > 1.

Then we have ¢ < 3, #J(2) < 2 and if ¢ = 3, then #J(2) = 1 and
#J(1) < 2. Moreover if #J(2) = 2, then #J(1) < 3. In fact, if this is not
valid, supp a(m) contains a set of simple roots with the Dynkin diagram

G—@ Q2 D Q—0 Q—@ QD
e
or o""o"\‘o or or o’ g‘c or o‘ c"’o\o
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which contradicts to the classification in §2.4. Here @ corresponds to a
simple root in J(7).

If g=1o0r ¢ =2 and #J(2) = 1, the Dynkin diagram of the support of
a(m) is star-shaped. Otherwise it is one of the following:

©co o 00 00
B Q—
NSy e &
60 0 6 00 00

Hence we have the lemma from the classification in §2.4. O

Remark 3.33. We mention about a related work by H. Kawakami, A. Naka-
mura and H. Sakai in [5]. They consider systems of first order differential
equations with index of rigidity —2 whose singular points are reqular singu-
lar or unramified irreqular singular points. These equations are obtained by
the confluence of singular points from Fuchsian systems of first order differ-
ential equations with index of rigidity —2 whose spectral types are basic in
the sense of Definition 3.16. We notice that spectral types can be defined for
systems of first order differential equations (see [9] for instance).

We regard these spectral types as elements in lattices of spectral types
and write their shapes as in §3. Then the list of shapes of these spectral
types in [5] and our list of shapes of basic pairs with index —2 coincide with
each other.

This coincidence is no more valid in the case when the index of rigidity
is —4. Let P be a differential operator with the shape of the spectral type

%:%_%_é , which represents a basic root with index —4. Then P is of

order 5 and has an unramified irregular singular point. The operator P is
obtained by a confluence of four reqular singular points of a Fuchsian dif-

2
ferential equation with the shape of the spectral type 2 3 2 1 ,
2

which does not corresponds to a basic root. Note that any Fuchsian differ-
ential equation of order 5 with a basic spectral type and index —4 has only
three singular points (see [9, 10]).
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