
Reducibility of hypergeometric equations

Toshio Oshima

Abstract. We study a necessary and sufficient condition so that hypergeo-
metric equations are reducible. Here the hypergeometric equations with one
variable mean the rigid Fuchsian linear ordinary differential equations. If the
equations with one variable have more than four singular points, they natu-
rally define hypergeometric equations with several variables including Appell’s
hypergeometric equations. We also study the reducibility of such equations
with several variables and we find a new kind of reducibility, which appears,
for example, in a decomposition of Appell’s F4.

Keywords. hypergeometric function, monodromy representations, middle con-
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1. Introduction and preliminary results

The Gauss hypergeometric equation

x(1− x)u′′ +
(
c− (a+ b+ 1)x

)
u′ − abu = 0 (1.1)

is reducible if and only if at least one of the numbers

a, b, a− c, b− c (1.2)

is an integer. An elementary proof of this result using neither an integral rep-
resentation nor a connection formula of the solution is given in [O2]. Here the
linear ordinary differential equation with coefficients in rational functions is said
to be reducible if and only if the equation has a non-zero solution satisfying a
linear ordinary differential equation with coefficients in rational functions whose
order is lower than the original equation. Note that the reducibility of the equation
is equivalent to the reducibility of the monodromy group of the solutions if the
equation is Fuchsian.
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The Riemann scheme of the Gauss hypergeometric equation isx =∞ 0 1
a 0 0
b 1− c c− a− b

 , (1.3)

which is a table of singular points of (1.1) and the characteristic exponents at
each singular point. The characteristic exponents 0 and 1− c at x = 0 mean that
(1.1) has solutions u(x) satisfying u(x) ∼ x0 and u(x) ∼ x1−c, respectively, when
x → 0. If the parameters a, b and c are generic, the differential equation with
this Riemann scheme is (1.1). Since the coefficients of the equation are polynomial
functions of the parameters a, b and c, the equation (1.1) is naturally and uniquely
defined by this Riemann scheme for any values of parameters.

In [O1] we define a (generalized) Riemann scheme

{λm} =
(
[λj,ν ](mj,ν)

)
0≤j≤p
1≤ν≤nj

=


x = c0 =∞ c1 · · · cp
[λ0,1](m0,1) [λ1,1](m1,1) · · · [λp,1](mp,1)

...
...

...
...

[λ0,n0 ](m0,n0 )
[λ1,n1 ](m1,n1 )

· · · [λp,np ](mp,np )


(1.4)

for a general Fuchsian ordinary differential equation Pu = 0 of order n. Here
c0, c1, . . . , cp are singular points of the equation and the sets of characteristic
exponents of the equation at x = cj are

{λj,ν + i | i = 0, 1, . . . ,mj,ν − 1, ν = 1, . . . , nj}, (1.5)

respectively, and moreover the local monodromies of the solutions of the equation
at x = xj are semisimple if λj,ν − λj,ν′ /∈ Z for 1 ≤ ν < ν′ ≤ nj and j = 0, . . . , p.
We say that {λm} is the Riemann scheme of P and the (p+1) tuples of partitions

m = (mj,1, . . . ,mj,nj )j=0,...,p (1.6)

of n is called the spectral type of the equation Pu = 0 or the operator P and we
put ordm = n which equalsmj,1+· · ·+mj,nj . If there is no confusion, m is shortly
expressed by m0,1 · · ·m0,n0 , · · · ,mp,1 · · ·mp,np and for example, the spectral type
of Gauss hypergeometric equation is 11, 11, 11.

The existence of such equation implies the Fuchs relation

|{λm}| :=
p∑

j=0

nj∑
ν=1

mj,νλj,ν − ordm+ 1
2 idxm = 0. (1.7)

Here the index of rigidity of m is defined by [Kz] as follows.

idxm :=

p∑
j=0

nj∑
ν=1

m2
j,ν − (p− 1)(ordm)2. (1.8)
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On the other hand, we say that m is irreducibly realizable if there exists an ir-
reducible Fuchsian equation Pu = 0 with the Riemann scheme (1.4) for generic
parameters λj,ν under the Fuchs relation. A characterization of irreducibly real-
izable spectral types m is given in [O1]. Moreover if m is irreducibly realizable,
then the equation Pu = 0 with the Riemann scheme (1.4) satisfying (1.7) has
(1 − 1

2 idxm) accessory parameters and the differential operator P is polynomial
functions of the parameters λj,ν and the accessory parameters, which is the uni-
versal operator in [O1, Theorem 6.14]. If an irreducibly realizable spectral type m
satisfies

idxm = 2, (1.9)

then m is called rigid. In this case the Fuchsian differential equation with the
Riemann scheme (1.4) has no accessory parameters and hence the equation is
uniquely determined by local structure, namely, by characteristic exponents and
conjugacy classes of local monodromies at the singular points.

The middle convolution for a Fuchsian system

du

dx
=

p∑
j=1

Aj

x− cj
u (1.10)

with constant square matrices A1, . . . , Ap of size n is introduced by [Kz] and [DR]

to analyze the rigid local system (cf. § 3). Denoting ∂ = d
dx and ϑ = x∂, we define

in [O1] the middle convolution mcµ(P ) with a complex number µ by

mcµ(P ) = ∂−k
∑
i, j

ci,jx
i(ϑ− µ)j , (1.11)

∂NP =
∑
i, j

ci,j∂
iϑj (1.12)

for an element P of the ring W [x] of linear ordinary differential operators with
polynomial coefficients. Here N is a sufficiently large integer so that ∂NP is of the
form (1.12) with ci,j ∈ C and then k is the maximal integer so that mcµ(P ) ∈W [x].

Theorem 1.1 ([O1]). Suppose that the equation Pu = 0 with the Riemann scheme
(1.4) is irreducible and the coefficients of P are polynomials without a common
zero and moreover suppose

λj,1 − λj,ν /∈ Z or mj,1 ≥ mj,ν (ν = 1, . . . , nj , j = 0, . . . , p) (1.13)

and

λj,1 = 0 (j = 1, . . . , p). (1.14)

If λj,ν are generic (see [O1, Theorem 5.2] for the precise condition) or the number

d1(m) := m0,1 + · · ·+mp,1 − (p− 1) ordm = 2ordm−
p∑

j=0

nj∑
ν=2

mj,ν (1.15)
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is positive, the Riemann scheme {λ′m′} of P ′ = mcλ0,1−1(P ) is determined by
λ′j,ν =


2− λ0,1 (j = 0, ν = 1),

0 (j = 1, . . . , p, ν = 1),

λj,ν − λ0,1 + 1 (j = 0, ν = 2, . . . , n0),

λj,ν + λ0,1 − 1 (j = 1, . . . , p, ν = 2, . . . , nj),

m′
j,ν =

{
mj,1 − d1(m) (j = 0, . . . , p, ν = 1),

mj,ν (j = 0, . . . , p, ν = 2, . . . , nj , )

(1.16)

and P = mc1−λ0,1◦mcλ0,1−1(P ). Moreover mcλ0,1−1(P ) is irreducible if d1(m) ≥ 0.
Here we allow that some mj,1 are 0.

Remark 1.2. i) If d1(m) > 0, then mj,1 > 0 for j = 0, . . . , p in the theorem.
ii) Suppose P ′ = mcλ0,1−1(P ) is defined when the values of the parameters

λj,ν are generic. Then we define P ′ for other values of the parameters by the
analytic continuation of the parameters. In this case P and P ′ may be reducible
for certain values of the parameters.

We define
∂1(m) := m′ (1.17)

by (1.15) and (1.16). Since

d1(m) · ordm = idxm+

p∑
j=0

nj∑
ν=1

(mj,1 −mj,ν)mj,ν , (1.18)

we have d1(m) > 0 if idxm = 2 and moreover m is monotone, namely

mj,1 ≥ mj,ν (ν = 1, . . . , nj , j = 0, . . . , p). (1.19)

The equation Pu = 0 is called rigid if it is irreducible and it has rigid spectral type.
By the gauge transformation u(x) 7→ v(x) =

∏p
i=1(x−ci)µiu(x), the characteristic

exponents of the Riemann scheme are changed from λj,ν to λ0,ν −
∑p

i=1 µi and
λj,ν + µj according to j = 0 and j = 1, . . . , p, respectively. The corresponding
transformation of P is called addition and we denote the transformation of P by
RAdµ1,...,µp

(P ). Here

RAdµ1,...,µp(P ) ∈W [x] ∩W (x)

p∏
j=1

(x− cj)µj · P ·
p∏

j=1

(x− cj)−µj

and the coefficients of the differential operator RAdµ1,...,µp(P ) has no common
zero. We put R(P ) = RAd0,...,0(P ). The addition keeps the order of P ∈W [x].

Hence if the equation Pu = 0 is rigid and ordP > 1, then we have ord(mcµ ◦
RAdµ1,...,µp(P )) < ordP with suitable numbers µ, µ1, . . . , µp. By a successive ap-
plication of suitable additions and middle convolutions, the rigid equation Pu = 0
is transformed into the equation du

dx = 0. Since additions and middle convolutions
are invertible, we can construct any rigid Fuchsian equation Pu = 0 by a successive
application of suitable additions and middle convolutions to the equation du

dx = 0.
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The combinatorial aspect of additions and middle convolutions are well in-
terpreted by a star-shaped Kac-Moody root system (W,Π) as follows, which was
introduced by [CB] to analyze irreducible Fuchsian systems. The set of simple
roots is

Π = {α0, αj,ν | j = 0, 1, . . . , ν = 1, 2, . . .} = {αi | i ∈ I} (1.20)

with

I := {0, (j, ν) | j = 0, 1, . . . , ν = 1, 2, . . .} (1.21)

and the inner product of the roots are given by

(α0|α0) = 2, (α0 | αj,ν) = −δν,1,

(αj,ν |αj′,ν′) =


2 (j = j′, ν = ν′),

−δj,j′ (|ν − ν′| = 1),

0 (j ̸= j′ or |ν − ν′| > 1).

(1.22)

The Weyl group W is generated by the simple reflection

sα(x) = si(x) = x− (α|x)α (α = αi ∈ Π, i ∈ I, x ∈
∑
α∈Π

Rα). (1.23)

The set of positive real roots Σre
+ and the set of negative real roots Σre

− are

Σre
+ =

{∑
α∈Π

kαα ∈Wα0 | kα ≥ 0
}
, Σre

− =
{
−α | α ∈ Σre

+

}
(1.24)

and then WΠ = Σre
+ ∪ Σre

− . For a tuple of partition m, [CB] attached an element
αm of the root lattice

∑
α∈Π Zα by

αm = ordm · α0 +

p∑
j=0

nj∑
ν=1

nj∑
s=ν+1

mj,sαj,ν . (1.25)

Then idxm = (αm|αm), sα0(αm) corresponds to the middle convolution because
(α0|αm) = d1(m) and sαj,ν (αm) corresponds to the transposition between mj,ν

and mj,ν+1. Moreover we have

Theorem 1.3 ([CB, O1]). The spectral type m is rigid if and only if αm ∈ Σre
+ .

Remark 1.4. i) This theorem is given by [O1, Chapter 7] and the corresponding
theorem for the first order system of Schlesinger canonical form is proved by [CB].

ii) There exist positive real roots which do not correspond to the rigid spectral
type. In fact we have

Σre
+ = {αm |m are rigid spectral types}

∪ {αj,ν + αj,ν+1 + · · ·+ αj,ν′ | 1 ≤ ν ≤ ν′, j = 0, 1, . . .}.
(1.26)
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We will examine the condition of irreducibility of the rigid equation Pu = 0
with the Riemann scheme (1.4). For an element w ∈ W , the expression w =
sβ1sβ2 · · · sβℓ

with the reflections sβi with respect to simple roots βi ∈ Π is called
minimal if ℓ is smallest among this product expression and in this case the number
ℓ is called the length of w and denoted by L(w). For a positive real root α ∈ Σre

+ ,
an element wα ∈ W is uniquely determined by the conditions wαα = α0 and
L(wα) is minimal. Moreover we put

∆(w) := Σre
+ ∩ w−1Σre

− and ∆(m) := ∆(wαm) (1.27)

for a rigid spectral type m. Note that the number |∆(w)| of elements of ∆(w)
equals L(w) and if w = sβ1sβ2 · · · sβL

is a minimal expression, we have

∆(w) = {βL, sβL
βL−1, . . . , sβL

· · · sβ2β1}, (1.28)

∆(wsβ) =

{
sβ

(
∆(w) \ {β}

)
(β ∈ ∆(w) ∩Π),

sβ∆(w) ∪ {β} (β ̸∈ ∆(w) ∩Π).
(1.29)

For a rigid spectral type m, the set of positive integers

[∆(m)] := {(α|αm) | α ∈ ∆(m)} (1.30)

is a partition of the non-negative integer h(αm) − 1 which is called the type of
∆(m), where

h(α) := k0 +
∑
j≥0

∑
ν≥1

kj,ν for α = k0α0 +
∑
j≥0

∑
ν≥1

kj,ναj,ν . (1.31)

Suppose m is rigid and monotone and ordm > 1. Let νj be the maximal integers
satisfying mj,1 − d1(m) < mj,νj+1 for j = 0, 1, . . .. Then [O1, Proposition 7.9]
shows

∆(m) = s0

( ∏
j≥0
νj>0

sj,1 · · · sj,νj

)
∆(s∂1m) ∪ {α0}

∪
p∪

j=1

{α0 + αj,1 + · · ·+ αj,ν | 1 ≤ ν ≤ νj},

[∆(m)] = [∆(s∂1m)] ∪ {d1(m)}

∪
p∪

j=1

{mj,ν+1 −mj,1 + d1(m) ∈ Z>0 | 1 ≤ ν ≤ νj}.

(1.32)

Here Z>0 is a set of positive integers and sm′ is a monotone spectral type obtained
by permutations of the sequences (m′

j,1, . . . ,m
′
j,n′

j
) of integers. The transformation

s is realized by an element of a subgroup W ′ of W generated by {sj,ν | j =
0, 1, . . . , ν = 1, 2, . . .}.
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Theorem 1.5 ([O1, Theorem 10.14]). A rigid Fuchsian differential equation Pu = 0
with the Riemann scheme (1.4) is reducible if and only if at least one of the numbers

p∑
j=0

nj∑
ν=1

m(β)j,νλj,ν (β ∈ ∆(m)) (1.33)

is an integer. Here

m(β)j,ν = kj,ν−1 − kj,ν (ν = 1, . . . , nj , j = 0, . . . , p) (1.34)

by putting {
β = k0α0 +

∑p
j=0

∑nj−1
ν=1 kj,ναj,ν ,

kj,0 = k0 and kj,ν = 0 if ν ≥ nj .
(1.35)

For example, suppose m = 11, 11, 11, namely, the spectral type of Gauss
hypergeometric equation. Then αm = 2α0 + α0,1 + α1,1 + α2,1 and we have

2α0 + α0,1 + α1,1 + α2,1
s0−→ α0 + α0,1 + α1,1 + α2,1

s0,1−−→ α0 + α1,1 + α2,1

s1,1−−→ α0 + α2,1
s2,1−−→ α0,

wαm = s2,1s1,1s0,1s0,

∆(m) := {α0, s0α0,1, s0s0,1α1,1, s0s0,1s1,1α2,1}
= {α0, α0 + α0,1, α0 + α1,1, α0 + α2,1}.

We rewrite the above in terms of tuples of partitions as follows.

11, 11, 11
∂1−→ 01, 01, 01

s0,1−−→ 10, 01, 01
s1,1−−→ 10, 10, 01

s2,1−−→ 10, 10, 10
10, 10, 10 ← ∗
01, 10, 10 ← −11, 00, 00 ← ∗
10, 01, 10 ← 00,−11, 00 ← 00,−11, 00 ← ∗
10, 10, 01 ← 00, 00,−11 ← 00, 00,−11 ← 00, 00,−11 ← ∗

and

{10, 10, 10, 01, 10, 10, 10, 01, 10, 10, 10, 01} = {m(β) | β ∈ ∆(11, 11, 11)}.
Then for the Riemann scheme (1.3) we have{∑2

j=0

∑2
ν=1 m(β)j,νλj,ν | β ∈ ∆(m)

}
= {a, b, 1 + a− c, c− b}

and the condition for the reducibility of (1.1) by Theorem 1.5 (cf. (1.3)).
For a rigid spectral type m let wαm = si1si2 · · · siL be a minimal expression

with respect to simple reflections. Put w(j) = si1si2 · · · sij and α(j) = w(j)−1α0

for j = 1, . . . , L. Then we have the expressions of α(j) inductively as follows.

α(j) = kνβ(j, ν) + γ(j, ν) (ν = 1, . . . , j),

β(j, ν) = sijβ(j − 1, ν), γ(j, ν) = sijγ(j − 1, ν), (ν = 1, 2, . . . , j − 1),

β(j, j) = αij , γ(j, j) = α(j − 1),

kj = −(α(j − 1)|αij ) = (α(j)|αij ) ∈ Z>0,

∆(w(j)) = {β(j, ν)|ν = 1, . . . , j}.

(1.36)
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Then we have
∆(m) = {βν := β(L, ν) | ν = 1, . . . , L}. (1.37)

A successive application of s∂1 to a rigid monotone spectral type m, we have
a sequence

m
s∂1−−→m(1) s∂1−−→m(2) s∂1−−→ · · · s∂1−−→m(k) = 10 · · · , 10 · · · , 10 · · · , . . . (1.38)

with a non-negative integer k. Then rewriting each transformation s as a product
of transpositions defined by sj,ν , we have a diagram as above to get ∆(m). In the
diagram each arrow corresponds to an element of ∆(m), which is expressed by

m = m(L) → · · · → m(j+1)
sij+1−−−→ m(j)

sij−−→ m(j−1) →
kℓn

(L,j) ← · · · ← kℓn
(j+1,j) ← kℓn

(j,j) ← ∗
(1.39)

for j = 1, . . . , |∆(m)| and we have

kjn
(j,j) = m(j) −m(j−1), αn(j,j) ∈ Π, kj = (αm|αn(L,j)),

αn(ℓ+1,j) = siℓ+1
αn(ℓ,j) ,

∆(m) = {αn(L,j) | j = 1, . . . , |∆(m)|},
(1.40)

and kj is a greatest common divisor of m(j)i,ν −m(j−1)i,ν with i ≥ 0 and ν ≥ 1.

2. Condition for reducibility

In this section we will further examine the condition of reducibility of Fuchsian
ordinary differential equations with a rigid spectral type. First we show a general
lemma assuring that if the rank of the equation does not depend on the parameter,
the condition for the reducibility does not depend on the realization of the equation
nor an integral shift of the parameter. Then we will classify the numbers (1.33)
giving the condition for the reducibility into three types, which is related to the
reducibility of a Pfaffian system studied in §3. In particular we show that we may
omit some numbers among them. Lastly in Theorem 2.7 we give a condition that
a reducible equation has a non-trivial quotient without an apparent singularity,
which is a ground state for the reducibility in view of a shift operator.

Put x = (x1, . . . , xn) and denote the ring of differential operators of x with
polynomial coefficients by W [x], which is called a Weyl algebra. The ring of dif-
ferential operators with coefficients in the field C(x) of rational functions of x is
denoted by W (x). We identify a system of linear differential equation

M :
N∑
j=1

Pi,juj = 0 (i = 1, . . . ,M) (2.1)

with a left W (x)-module. Here Pi,j ∈ W (x) and u1, . . . , uN are generators of the
left W (x)-module and (2.1) defines fundamental relations among the generators.
The rank ofM is the dimension of the vector space ofM over the field W (x) and
we denote it by rankM. If n = 1, the rank of the equation Pu = 0 with P ∈W (x)
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equals ordP , the order of P . Suppose rankM <∞. ThenM is said to be reducible
ifM has a quotient left W (x)-moduleM′ satisfying 0 < rankM′ < rankM.

Lemma 2.1. LetMt and Nt are systems of linear differential equations with holo-
morphic parameter t ∈ D := {t ∈ C | |t| < 1}. Suppose there exist a positive
integer K such that rankMt = rankNt = K for any t ∈ D and a homomorphism
ϕt ofMt to Nt. Here it means a homomorphism between left W (x)-modules. As-
sume that ϕt is holomorphically depend on t and ϕt is an isomorphism if t ̸= 0.
ThenM0 is reducible if and only if N0 is reducible.

Proof. Replacing ϕt by tmϕt with a suitable integer m, we may assume ϕ0 ̸= 0.
Then ϕ0 is also a non-zero homomorphism ofM0 to N0 by analytic continuation.
If ϕ0 is an isomorphism, the claim of the theorem is clear. If ϕ0 is not bijective, then
the kernel and the image of ϕ0 is non-trivial proper invariant W (x)-submodules
ofM0 and N0, respectively, and hence we have the lemma. □

Hereafter in this section we examine the reducible condition for a Fuchsian
ordinary differential equations with a rigid spectral type. Let

P (λ)u = 0 (2.2)

be a differential equation with the Riemann scheme (1.4) satisfying (1.7). We
assume that the spectral typem of the equation is rigid. Then we have the following
remark, which also follows from Theorem 1.5.

Remark 2.2. Let ϵj,ν be integers satisfying
∑

j,ν mj,νϵj,ν = 0. Then [O1, Theo-

rem 11.2] shows that there exists a homomorphism ϕλ of the equation P (λ)u = 0
to the equation P (λ+ ϵ)v = 0. Since ϕλ is holomorphically depend on λ, the the-
orem implies that P (λ)u = 0 is reducible if and only if P (λ+ ϵ)v = 0 is reducible.

Lemma 2.3. Let P (λ) be the universal operator with a rigid Riemann scheme {λm}.
Suppose that the characteristic exponents λj,ν holomorphically depend on t ∈ D.
Assume that P (λ(t))u = 0 is irreducible if t ̸= 0 and

d1(m) := mj,0 +mj,1 + · · ·+mj,p − (p− 1) ordm > 0.

Put

µ(t) = λ0,1(t) + λ1,1(t) + · · ·+ λp,1(t),

P̃ (λ(t)) = RAdλ1,1(t),...,λp,1(t) P (λ(t)),

Q(λ(t)) = mc1−µ(t)P̃ (λ(t))

and let m′ be the spectral type of Q(λ(t)).
i) If µ(0) = 1, P (λ(0))u = 0 has a quotient RAd−λ1,1(0),...,−λp,1(0)Q(λ(0))u =

0.
ii) Let d′ be a positive integer satisfying 1 ≤ d′ ≤ d1(m). If µ(0) = 1 −

d′, P (λ(0))u = 0 has solutions r(x)
∏p

j=1(x − cj)
λj,1 , where r(x) are arbitrary

polynomials of degree < d′ and in particular
∏p

j=1(x− cj)λj,1 is a solution.
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Proof. We may assume Q(λ(t))u = 0 is irreducible if t ̸= 0. Put n = ordm.

Note that ordQ(λ(t)) = n− d1(m) and the Riemann scheme of P̃ (λ(t)) is
x = c0 =∞ cj (j = 1, . . . , p)

[
∑p

i=0 λi,1](m0,1) [0](mj,ν)

[λ0,ν +
∑p

i=1 λi,1](m0,ν) (ν = 1, . . . , n0) [λj,ν − λj,1](mj,ν) (ν = 1, . . . , nj)

 .

If µ(0) = 1, the definition of mc1−µ(t) implies that Q(λ(0)) is a quotient of P̃ (λ(0)),
which proves i).

Put f(x) =
∏p

j=1(x− cj)n−mj,1 . Then the Riemann scheme of P∨u = 0 with

P∨ = (f(x)−1P̃ )∗ equals
x = c0 =∞ cj (j = 1, . . . , p)

[2− n−m0,1 −
∑p

i=0 λi,1](m0,1) [n−mj,1](mj,ν)

[2− n−m0,ν − λ0,ν −
∑p

i=1 λi,1](m0,ν) [n−mj,ν − λj,ν + λj,1](mj,ν)


as was given in [O1, Theorem 4.19 ii)] and that of P̃ ∗u = 0 equals

x = c0 =∞ cj (j = 1, . . . , p)
[2− d1 −

∑p
i=0 λi,1](m0,1) [0](mj,ν)

[2− d1 −m0,ν +m0,1 − λ0,ν −
∑p

i=1 λi,1](m0,ν) [mj,1 −mj,ν − λj,ν + λj,1](mj,ν).

 .

Here d1 = d1(m). Note that P (λ(t))∗ is the universal operator with the above
Riemann scheme and 2 − d1 −

∑p
i=0 λi,1(0) = 1 + d′ − d1. Then in the case d′ =

d1(m), the claim ii) follows from the definition of P∨ and mc1−µ(t).

We may split the characteristic exponent [λ0,1](m0,1) to

[λ0,1 + d1 − d′](m0,1−d1+d′) and [λ0,1](d1−d′).

Then m0,1, d1(m) and n0 changed into m0,1− d1(m) + d′, d′, n0 +1, respectively,
and the same argument as above proves ii). □

Definition 2.4. The elements β ∈ ∆(m) are classified into three types

(Type 1) ord sβαm > 0,

(Type 2) ord sβαm = 0,

(Type 3) ord sβαm < 0.

Putting γ := sβαm, we have γ = αm − kββ with kβ = (αm|β) and therefore

αm = kββ + γ. (2.3)

Here we put ord γ = n0 if γ =
∑

i∈I niαi.

Proposition 2.5. i) We have ordβ > 0 for any β ∈ ∆(m).

ii) If kβ = 1, then β is of Type 1.

iii) The numbers (1.33) for β ∈ ∆(m) of Type 3 may be omitted for Theo-
rem 1.5.
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Proof. Under the notation in the preceding section, we have β = β(L, νo) with a
certain νo in (1.36).

i) Since m is monotone, if α ∈ Σre
+ satisfies (α|αm) > 0, then ordα > 0.

ii) The claim is given in [O1, Proposition 7.9 iv)].
iii) Note that the condition

∑
j,ν m(β)j,νλj,ν ∈ Z implies

∑
j,ν m(γ)j,νλj,ν ∈

Z because of the Fuchs relation. Since γ(νo, νo) ∈ Σre
+ , there exists j > νo satisfying

β(j, j) = αij = γ(j − 1, νo) = −γ(j, νo) ∈ Π. Then β(L, j) = −γ(L, νo) ∈ ∆(m).
Hence the condition for the number (1.33) with β(L, νo) can be omitted for The-
orem 1.5.

Put βν = β(L, ν), γν = γ(L, ν) and kν = kβν for simplicity. Then

αm = kνoβνo + γνo with kνo = (αm|βνo)

and

kj = (αm|βj) = (αm|kνoβνo − αm) = k2νo
− 2 > 1.

If β(L, j) is of Type 3, we repeat the same way and this procedure ends in
finite steps because νo < j ≤ L. □

Remark 2.6. i) There always exists β ∈ ∆(m) of Type 1 and kβ = 1 in (2.3) if
ordm > 1 (cf. [O1, Proposition 10.7]). In this case we have

|{λm(β)}|+ |{λm(γ)}| = 1

and the condition
∑

m(β)j,νλj,ν ∈ Z is equivalent to
∑

m(γ)j,νλj,ν ∈ Z.
ii) Type 2 appears only in the case when there exist jo and 1 ≤ νo < ν′o ≤ n

such that mjo,νo +mjo,ν′
o
and mj,ν with (j, ν) ̸∈ {(jo, νo), (jo, ν′o)} are divisible by

a common integer k larger than 1. There is an example of Type 2 in § 3.4.
iii) There is an example of Type 3 in § 3.7.

Theorem 2.7. Let P (λ) be the universal operator with the Riemann scheme (1.4)
with rigid spectral type m. Let β ∈ ∆(m). Then if

1 ≤ d′ := ordβ −
p∑

j=0

nj∑
ν=1

m(β)j,νλj,ν ≤ (αm|β), (2.4)

P (λ) ∈W (x)Q(λ). Here Q(λ) is the universal operator with the spectral type m(β)
and if d′ = 1, the Riemann scheme of Q(λ) equals {λm(β)}. Here 0 < ordQ(λ) =
ordβ < ordP .

If (αm|β) = 1, then replacing β by γ = αm − β, the above statement also
holds.

Proof. First note that the condition d′ = 1 for β is the Fuchs relation of Q(λ)
written by |{λm(β)}| = 0 and hence this number d′ is invariant under the action
of W .

We will prove the theorem by the induction with respect to the number k in
(1.38). Suppose β = α0 or α0 + αj,1 + · · · + αj,ν in (1.32). Applying Lemma 2.3
ii) with d′ = 1 to P after the transposition of the indices (j, ν + 1) and (j, 1) if
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necessary, we have the claim of the theorem for β. We have also the claim of the
theorem for γ by Lemma 2.3 i).

Put w′ = (
∏

j≥0
νj>0

sj,1 · · · sj,νj )s0 in (1.32) and let β ∈ w′−1
∆(s∂1m). Then β

corresponds to an element β′ ∈ ∆(s∂1m) with β′ = w′β and w′ ∈W corresponds
to the map s∂1, which corresponds to ψ = RAdµ1,...,µp ◦mcµ, the combination of
a middle convolution and an addition.

Here we note that β, β′ ∈ Σre
+ , ordβ > 0 and ordβ′ > 0.

Then the statement for β is obtained by applying ψ−1 to the operator ψ(P )
and the operator corresponding to β′ ∈ ∆(s∂1m) whose existence is assured by
the hypothesis of the induction.

If β is of Type 1, then γ′ := w′γ ∈ Σre
+ and ord γ′ > 0, we have also the last

claim. □

3. Hypergeometric equations with several variables

Any 4 points t0, t1, t∞, tx in the Riemann sphere P1
C can be transformed to

0, 1, ∞, x by the fractional transformation defined by

x =
(tx − t0)(t∞ − t1)
(t1 − t0)(t∞ − tx)

.

Hence Gauss hypergeometric function F (a, b, c;x) is naturally considered as a hy-
pergeometric function on the configuration space of 4 points in P 1

C by

F (a, b, c; tx−t0
t1−t0

t∞−t1
t∞−tx

).

Then the Riemann scheme of this function istx = t0 tx = t1 tx = t∞ t0 = t1 t0 = t∞ t1 = t∞
0 0 a a 0 0

1− c 1− a− b b b 1− a− b 1− c

 .

The solutions of the universal rigid Fuchsian equations Pu = 0 with a rigid spec-
tral type m have natural integral representations (cf. [O1]). When m is a (p+ 1)
tuples of partitions, P has (p + 1) singular points. We may specialize the points
as 0, 1, ∞, y1, . . . , yp−2 and then the solutions u(x, y1, . . . , yp−2) has (p− 1) vari-
ables by the integral representation. These functions are a kind of hypergeometric
functions with several variables and also they can be considered hypergeometric
functions on the configuration space of (p+ 2) points in P1

C.
For these hypergeometric functions with several variables, it will be conve-

nient to use the differential equations of Pfaffian form satisfied by the functions.
They have been studied by [DR] for the case of single variable and by [Ha] for
several variables. We will shortly explain it in the case of two variables x and y as
an example. Then the Pfaffian system is

Mλ : du =

(
A1

dx

x
+A2

d(x− y)
x− y

+A3
d(x− 1)

x− 1
+A4

dy

y
+A5

d(y − 1)

y − 1

)
u. (3.1)
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Here Aj are square matrices of size n. They are called the residue matrices along
the corresponding hypersurfaces. If the eigenvalues of Aj are λj,ν with multiplicity
mj,ν for ν = 1, . . . , nj and Aj are semisimple, the set of characteristic exponents
corresponding to Aj is defined by {[λj,1]mj,1 , . . . , [λj,nj ]mj,nj

}, and we can define

the generalized Riemann scheme for this Pfaffian system. For example, the set of
characteristic exponents at x = 0, x = y and x = 1 are these sets for j = 1, j = 2
and j = 3, respectively, and the set of characteristic exponents at x =∞ is define
by the matrix A0 = −(A1 +A2 +A3).

The addition with parameters λ1, λ2, λ3 (for x-variable) is defined by

Adλ2,λ2,λ3(A1, A2, A3, A4, A5) 7→ (A1 + λ1, A2 + λ2, A3 + λ3, A4, A5).

The middle convolution mcµ to these matrices is defined by

mcµ(Aj) := Ãj mod Kµ :=

(
kerA1

kerA2

kerA3

)
⊕ ker(Ã1 + Ã2 + Ã3) (3.2)

with

Ã1 =

A1 + µ A2 A3

0 0 0
0 0 0

 , Ã2 =

 0 0 0
A1 A2 + µ A3

0 0 0

 , Ã3 =

 0 0 0
0 0 0
A1 A2 A3 + µ

 ,

Ã4 =

A4 +A2 −A2 0
−A1 A4 +A1 0
0 0 A4

 and Ã5 =

A5 0 0
0 A5 +A3 −A3

0 −A2 A5 +A2

 .

Here Ãj are considered to be linear maps on the vector space C3n and the
space Kµ are invariant by these maps and then we represent Aj as square matrices
of size 3n− dimKµ.

Considering y as a parameter and forgetting A4 and A5, the above definition
is due to [DR]. In this case, x = 0, 1, y, ∞ are regular singular points of the
differential equation with the variable x. The above operation for A4 and A5 is
defined and studied by [Ha], where x and y are equally considered as variables.

When we regard y as a parameter, the structure of operations of additions and
middle convolutions are compatible to the corresponding operations of Fuchsian
ordinary differential equations, which are briefly explained in the previous sections.
Moreover any rigid monodromy group is equally realized by solutions of both
type of equations. Assume that the spectral type m is rigid. Then there is a
homomorphism ψλ of the universal Fuchsian differential equation P (λ)u = 0 to
the rigid Pfaffian system Mλ, where ψλ is meromorphically depend on λ and it
defines an onto isomorphism between two equations for generic λ, which follows
from the fact that they are constructed from the trivial equation by successive
applications of additions and middle convolutions.

Table 1 is the number of rigid spectral types of order at most 15 whose
numbers of singular points are smaller than 7.

It is well-known that the integral representation of the solution of Jordan-
Pochhammer equation, which is characterized by rigid spectral type 21, 21, 21, 21,
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gives a solution of Appell’s F1 (in general, Lauricella’s FD with more variables).
As is given in the table, the rigid Pfaffian system corresponding to the spectral
type 31, 31, 22, 211 corresponds to Appell’s F2 and F3 and that to 31, 22, 22, 22
corresponds to Appell’s F4 as was shown in [Ha]. Hence we have a plenty of gen-
eralizations of Appell’s hypergeometric functions.

Remark 3.1. i) The number of parameters of the equation with a rigid spectral
type after a suitable addition is given by

#parameters=
∑(

# blocks at singular points−1
)
=

p∑
j=0

(nj − 1) (3.3)

as in the case of the Gauss hypergeometric function.
ii) In Table 2, the arrow shows that two spectral types are connected by an

addition and a middle convolution. Moreover in Table 2 we see that F2 and F3

Table 1. Hypergeometric equations with less than 6 variables

Order 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 variable 1 1 3 5 13 20 45 74 142 212 421 588 1004 1481
2 variables 1 2 4 11 16 35 58 109 156 299 402 685 924
3 variables 1 1 3 5 12 17 43 52 104 135 263 327
4 variables 1 0 1 3 5 8 14 24 39 60 79
5 variables 1 0 0 2 3 4 6 6 14 20

Table 2. Hierarchy of rigid quartets (cf. [O1])

21, 21, 21, 21

31, 22, 31, 211

31, 22, 22, 22

41, 32, 311, 311

41, 41, 221, 221

41, 32, 32, 221

32, 32, 32, 32

51, 222, 33, 411

33, 42, 33, 411

42, 33, 411, 411

51, 33, 411, 3111

51, 51, 222, 2211

411, 42, 411, 411

51, 42, 321, 321

51, 42, 33, 2211

51, 33, 33, 222

42, 42, 42, 321

42, 33, 33, 33
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are obtained by restrictions of a Pfaffian system to different complex lines and the
pair of I5 and J5 has the same property.

iii) It follows from [O1, Theorem 11.2] that there exists a non-zero homomor-
phism realizing any integral shift of characteristic exponents in the Pfaffian system
corresponding to a rigid Fuchsian ordinary differential equation. Lemma 2.1 as-
sures that the irreducibility of the system is invariant under the integral shift.

iv) There exists a universal Fuchsian equation with a rigid spectral type as is
stated in §1. But in the case of a Pfaffian system the extension to a special value
of λ which corresponds to a reducible monodromy group is not unique. Consider

the Gauss hypergeometric system with the Riemann scheme

{
λ0,1 λ1,1 λ2,1
λ0,2 λ1,2 λ2,2

}
for generic values of parameters under the condition λ0,j+λ1,j+λ2,j = 0 for j = 1
and 2. Then the Riemann scheme of its irreducible quotient is {λ0,1 λ1,1 λ2,1} or
{λ0,2 λ1,2 λ2,2}. But there is no natural way to determine it and it depends on its
construction using additions and middle convolutions.

Theorem 3.2. Let

du =

( n∑
i=1

q∑
k=1

Ai,k
dyi

yi − ck
+

∑
1≤i<j≤n

Bi,j
d(yi − yj)
yi − yj

)
u (3.4)

be a completely integrable Pfaffian system with variables y1, . . . , yn, where Ai,k and
Bi,j are constant N × N matrices and c1, . . . , cq are mutually different complex
numbers. Suppose

du

dx
=

( q∑
k=1

A1,k

x− ck
+

n∑
j=2

B1,j

x− yj

)
u (3.5)

is an irreducible rigid Fuchsian system with mutually different complex numbers
c1, . . . , cq, y2, . . . , yn. Then (3.4) is irreducible and it is obtained by a successive
application of additions and middle convolutions extended by Haraoka for the vari-
able x = y1 to a Pfaffian differential equation

dv =

( n∑
i=2

q∑
k=1

αi,k
dyi

yi − ck
+

∑
2≤i<j≤n

βi,j
d(yi − yj)
yi − yj

)
v (3.6)

of the first order. Here αi,k and βi,j are complex numbers. Note that the solution
of (3.6) is a constant multiple of

∏n
i=2

∏q
k=1(yi − ck)αi,k ·

∏
2≤i<j≤n(yi − yj)βi,j .

Proof. This theorem is not clearly stated in [Ha] but it is essentially obtained in
or easily obtained by [Ha].

Since (3.5) is rigid, it is reduced to the trivial equation du = 0 by a successive
application of additions and middle convolutions. Then we get an equation of the
form (3.6) by the successive application of the corresponding operations for y1
variable to (3.4). Since these operations are invertible, we obtain (3.4) from (3.6)
by these operations.

Since (3.5) is irreducible, the monodromy group of the solutions of (3.4) is
irreducible even if y2, . . . , y2 are fixed. Hence the equation (3.4) is irreducible. □
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Theorem 3.3. Let m be a rigid spectral type and let (3.5) be the Fuchsian system
with the rigid spectral type m. Let

{
[λj,ν ]mj,ν

}
0≤j≤p
1≤ν≤nj

be the Riemann scheme of

the Fuchsian system (3.5) with p = q + n − 1. Let (3.4) be the corresponding
completely integrable Pfaffian system of rank N = ordm.

i) Suppose any one of the numbers (1.33) is not an integer, the Pfaffian
system (3.4) is irreducible.

i) Suppose there exists β ∈ ∆(m) such that
p∑

j=0

nj∑
ν=1

m(β)j,νλj,ν ∈ Z. (3.7)

If β is of Type 1 or Type 3 (cf. Definition 2.4), then (3.4) is reducible.
Suppose (3.4) is irreducible. Fix a suitable base of local solutions of (3.4) in

a neighborhood of a generic point yo = (y01 , . . . , y
o
n) of Cn. Then

Ãν = Ã′
ν ⊗ Ir (1 ≤ ν ≤ p) (3.8)

are the corresponding monodromy matrices along the closed loops γν starting from
yo in the y1-plane and r is an integer larger than 1. Here putting cq+j−1 = yj for
2 ≤ j ≤ n, we denote by γν the closed loops starting from yo in the y1-plane which
satisfy 1

2π
√
−1

∫
γν

dy1

y1−cν′
= δν,ν′ with ν, ν′ ∈ {1, 2, . . . , p}.

Proof. The claim i) follows from Theorem 3.2.
Fix β ∈ ∆(m). We may fix generic λj,ν satisfying (3.7) and the Fuchs relation.

Then (3.5) is reducible. Let u(y) be a local solution of (3.4) in a neighborhood
of yo such that a component of u(x, y2, . . . , yn) is a solution of an irreducible
Fuchsian ordinary differential equation with the variable x so that the order R of
the equation is smaller than N . Since the coefficients of the equation are rational
functions of (x, y), the analytic continuations of the component satisfy the same
equation.

Suppose (3.4) is irreducible. Then the dimension of the linear span V of the
local solutions obtained by analytic continuations of u(y) with respect to the vari-
ables y1, . . . , yn equals N . Hence there exist uℓ,1(y), . . . , uℓ,R(y) in V for 1 ≤ ℓ ≤ r
with N = rR such that the spaces spanned by uℓ,1(y), . . . , uℓ,R(y) are stable un-
der the analytic continuation along the loops γν and moreover the dimension of

the space
∑r

ℓ=1

∑R
i=1 Cuℓ,i(y) equals N . We may moreover assume that the mon-

odromies along γν with respect to the base {uℓ,1(y), . . . , uℓ,R(y)} do not depend
on ℓ. Then the multiplicity of the eigenvalues of local monodromy matrices at each
singular points of (3.5) is divisible by r. This never happens if β is of Type 1 nor
Type 3 because of the genericity condition for the values λj,ν . Hence β is of Type
2 and we have the theorem. □
Remark 3.4. Under the notation in Theorems 1.5, Theorem 3.2 and Theorem 3.3
the ordinary differential equation (3.5) is reducible if and only if at least one of the
numbers (1.33) for β ∈ ∆(m) of Type 1 or Type 2 is an integer. But it seems that
the system (3.4) is reducible if and only if at least one of the numbers (1.33) for
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β ∈ ∆(m) of Type 1 is an integer (cf. §3.4). We note that for most rigid spectral
types m there is no β ∈ ∆(m) of Type 2 (cf. Remark 2.6 ii)) and in this case the
system (3.4) is reducible if and only if so is the equation (3.5).

We will examine all of our Pfaffian systems with two variables corresponding
to a rigid spectral type m whose ranks are at most 5 (cf. [O3]). The Pfaffian
systems satisfied by Appell’s hypergeometric functions are described in [HK].

3.1. Computer algebra

A computer algebra Risa/Asir with the library [O4] calculates ∆(m) and mcµ in
(1.11) and (3.2) and in particular the examples given in this section.

3.2. Appell’s F1

m = 21, 21, 21, 21 : rank= 3 with 4 parameters and [∆(m)] = 14 · 21

21, 21, 21, 21 → 01, 01, 01, 01 H2 : 11, 11, 11, 20 (by a middle convolution)
= 10, 10, 10, 01⊕ 11, 11, 11, 20 (redicibility: 4 cases by the symmetry)
= 2(10, 10, 10, 10)⊕ 01, 01, 01, 01 (1 case)

The generalized Riemann scheme for the two variables (x, y) isx = 0 x = 1 x = y x =∞ y = 0 y = 1 y =∞
[0]2 [0]2 [0]2 [e]2 [0]2 [0]2 [−c− e]2
a b c d a+ c+ 2e b+ c+ 2e d


with the following Fuchs relation.

a+ b+ c+ d+ 2e = 2, 0 (Fuchs rel.)
10, 10, 10, 01 : d ̸∈ Z (irred. cond.)
10, 10, 01, 10 : c+ e /∈ Z
10, 01, 10, 10 : b+ e /∈ Z
01, 10, 10, 10 : a+ e /∈ Z
10, 10, 10, 10 : e ̸∈ Z

t∞ t0 ty t1 tx idx
t∞ 21 21 21 21 2
t0 21 21 21 21 2
ty 21 21 21 21 2
t1 21 21 21 21 2
tx 21 21 21 21 2

In the Fuchs relation, “= 2” is valid for a single Fuchsian differential equation
and “= 0” is valid for the corresponding Pfaffian system.

The set of 5 points {t0, t1, t∞, tx, ty} in P1
C is transformed into {0, 1,∞, x, y}.

Hence a Pfaffian system with 5 variables t0, t1, t∞, tx, ty is defined through this
map and the spectral type at each singular hypersurface is given in the above.

The above 5 conditions for the irreducibility are obtained by the following
procedure, which is explained in §1.

21, 21, 21, 21
−2⇒
2
01, 01, 01, 01→

1
10, 01, 01, 01→

1
10, 10, 01, 01→

1
10, 10, 10, 01↘

1

10, 10, 10, 102(10, 10, 10, 10)
+2⇐ ∗

01, 10, 10, 10
+1⇐ −11, 00, 00, 00← ∗

10, 01, 10, 10
+1⇐ 00,−11, 00, 00← 00,−11, 00, 00← ∗

10, 10, 01, 10
+1⇐ 00, 00,−11, 00← 00, 00,−11, 00← 00, 00,−11, 00← ∗

10, 10, 10, 01
+1⇐ 00, 00, 00,−11← 00, 00, 00,−11← 00, 00, 00,−11← 00, 00, 00,−11←∗
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The Pfaffian system corresponds to the hypergeometric function

F1(α;β, β
′; γ;x, y) =

∞∑
m,n=0

(α)m+n (β)m (β′)n
(γ)m+nm!n!

xmyn

with

a = β′ − γ + 1, b = γ − α− β − 1, c = −β − β′, d = α, e = β

and then the necessary and sufficient condition for the irreducibility is

{α, β, β′, α− γ, β + β′ − γ} ∩ Z = ∅. (3.9)

3.3. Appell’s F2, F3

211, 22, 31, 31 : rank= 4, 5 parameters, (16 · 22)
→ F1 : 201, 21, 21, 21 H2 : 011, 02, 11, 11
= 010, 01, 10, 10⊕ 201, 21, 21, 21 (4)
= 101, 11, 11, 20⊕ 110, 11, 20, 11 (2)
= 2(100, 01, 10, 10)⊕ 011, 20, 11, 11 (2)
These are of Type 1.

t∞ t0 ty t1 tx idx

t∞ 211 211 211 211 −8
t0 211 31 31 22 2
ty 211 31 22 31 2
t1 211 31 22 31 2
tx 211 22 31 31 22a+ b+ c+ 2d+ e+ f = 3, 0

x = 0 x = y x = 1 x = ∞ y = 0 y = 1 y = ∞ x = y = ∞
[0]2 [0]3 [0]3 [d]2 [0]3 [0]2 [−a− b− e− d]2 [f ]3
[a]2 b c e a+ b+ 2d [e− f ]2 f −a− b− e

f a+ f


211, 22, 31, 31

−2⇒
2
011, 02, 11, 11→ 101, 02, 11, 11→110, 02, 11, 11→110, 20, 11, 11⇒

2(100, 10, 10, 10)
+2⇐ ∗

010, 10, 10, 10
+1⇐ −110, 00, 00, 00← ∗

001, 10, 10, 10
+1⇐ −101, 00, 00, 00← 0−11, 00, 00, 00← ∗

2(100, 01, 10, 10)
+1⇐2(000,−11, 00, 00)←2(000,−11, 00, 00)←2(000,−11, 00, 00)

010, 01, 10, 10
+0⇐ 010, 01, 10, 10 ← 100, 01, 10, 10 ← 100, 01, 10, 10 ← 100, 10, 10, 10

001, 01, 10, 10
+0⇐ 001, 01, 10, 10 ← 001, 01, 10, 10 ← 110, 01, 10, 10 ← 010, 10, 10, 10

110, 11, 11, 20
+1⇐ 010, 01, 01, 10 ← 100, 01, 01, 10 ← 100, 01, 01, 10 ← 100, 10, 01, 10

110, 11, 20, 11
+1⇐ 010, 01, 10, 01 ← 100, 01, 10, 01 ← 100, 01, 10, 01 ← 100, 10, 10, 01

The condition for the irreducibility is

{d, e, a+ d, a+ e, a+ b+ d+ e, a+ c+ d+ e, f, a+ f} ∩ Z = ∅. (3.10)

This system corresponds to the equation satisfied by F2(α;β, β
′; γ, γ′;x, 1−y) with

F2(α;β, β
′; γ, γ′;x, y) =

∞∑
m,n=0

(α)m+n (β)m (β′)n
(γ)m (γ′)nm!n!

xmyn,

a = 1− γ, b = γ + γ′ − α− β − β′ − 2, c = γ − α− β + β′ − 1,

d = β, e = α− γ′ + 1, f = α

and (3.10) equals

{α, β, β′, α− γ, α− γ′, β − γ, β′ − γ′, α− γ − γ′} ∩ Z = ∅. (3.11)
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3.4. Appell’s F4

t∞ t0 ty t1 tx idx
t∞ 211 22 211 22 −4
t0 211 22 211 22 −4
ty 22 22 22 31 2
t1 211 211 22 22 −4
tx 22 22 31 22 2

22, 22, 31, 22 : rank= 4, 4 parameters,
(18 · 21) → F1 : 12, 12, 21, 12

= 01, 01, 10, 01⊕ 21, 21, 21, 21 (8)
= 2(11, 11, 20, 11)⊕ 00, 00, (−1)1, 00 (1)
The last one is of Type 2.
a+ 2b+ 2c+ 2d+ 2e = 3, 0

x = 0 x = 1 x = y y = 0 y = 1 x =∞ y =∞ x = y =∞
[0]2 [0]2 [0]3 [0]2 [0]2 [d]2 [b+ c+ d]2 b+ c+ 2d
[b]2 [c]2 a [−b]2 [−c]2 [e]2 [b+ c+ e]2 b+ c+ 2e

[0]2


The addition corresponding to u 7→ yb(1− y)cu changes the above into

x = 0 x = 1 x = y y = 0 y = 1 x =∞ y =∞ x = y =∞
[0]2 [0]2 [0]3 [0]2 [0]2 [d]2 [d]2 2d
[b]2 [c]2 a [b]2 [c]2 [e]2 [e]2 2e

[−b− c]2

 .

31, 22, 22, 22
−1⇒
1
21, 12, 12, 12 → 21, 21, 12, 12 → 21, 21, 21, 12→ 21, 21, 21, 21⇒

10, 10, 10, 10
+1⇐ ∗

10, 01, 10, 10
+1⇐ 00,−11, 00, 00 ← ∗

10, 10, 01, 10
+1⇐ 00, 00,−11, 00 ← 00, 00,−11, 00 ← ∗

10, 10, 10, 01
+1⇐ 00, 00, 00,−11 ← 00, 00, 00,−11 ← 00, 00, 00,−11← ∗

2(20, 11, 11, 11)
+1⇐ 2(10, 01, 01, 01)←2(10, 10, 01, 01)←2(10, 10, 10, 01)←2(10, 10, 10, 10)

21, 21, 21, 21
+2⇐ 01, 01, 01, 01 ← 01, 01, 01, 01 ← 01, 01, 10, 01 ← 01, 10, 10, 10

10, 10, 01, 01
+0⇐ 10, 10, 01, 01 ← 10, 01, 01, 01 ← 10, 01, 10, 01 ← 10, 01, 10, 10

10, 01, 10, 01
+0⇐ 10, 01, 10, 01 ← 10, 10, 10, 01 ← 10, 10, 01, 01 ← 10, 10, 01, 10

10, 01, 01, 10
+0⇐ 10, 01, 01, 10 ← 10, 10, 01, 10 ← 10, 01, 10, 10 ← 10, 10, 10, 01

Kato [K1, K2] gives the equation
x(1− x)∂

2u

∂x2
+
(
γ − (α+ β + 1)x

)∂u
∂x
− αβu+ ϵ

y − 1

x− y

(
x
∂u

∂x
− y ∂u

∂y

)
= 0,

y(1− y)∂
2u

∂y2
+
(
γ − (α+ β + 1)y

)∂u
∂y
− αβu+ ϵ

x− 1

y − x

(
y
∂u

∂y
− x∂u

∂x

)
= 0

satisfied by u(x, y) = F4

(
α, β; γ, γ′;xy, (1− x)(1− y)

)
with

F4(α, β; γ, γ
′;x, y) =

∞∑
m=n=0

(α)m+n (β)m+n

(γ)m (γ′)nm!n!
xmyn,

ϵ = γ + γ′ − α− β − 1. (3.12)

We note that when ϵ = 0, the above equation has the solution

u(α, β, γ;x, y) = F (α, β, γ;x) · F (α, β, γ; y). (3.13)
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Hence the monodromy group defined by the space of solutions is irreducible when
ϵ = 0 (generally 2ϵ ∈ Z by Lemma 2.1 or by the Riemann scheme) and α, β and
γ are generic. The corresponding Pfaffian system (3.1) is given by

A1 =


0 1 0 0
0 1− γ 0 0

0 ϵ 0 1
0 0 0 1− γ

 , A4 =


0 0 1 0
0 0 ϵ 1

0 0 1− γ 0
0 0 0 1− γ

 , A2 =


0 0 0 0
0 ϵ −ϵ 0

0 −ϵ ϵ 0
0 0 0 0

 ,

A3 =


0 0 0 0

−αβ −γ′ ϵ 0
0 0 0 0

0 0 −(α+ ϵ)(β + ϵ) −γ′

 , A5 =


0 0 0 0
0 0 0 0

−αβ ϵ −γ′ 0

0 −(α+ ϵ)(β + ϵ) 0 −γ′

 ,

with

a = 2ϵ, b = 1− γ, c = −γ′, d = α, e = β.

Then the condition for the irreducibility is

{d, e, b+ d, b+ e, c+ d, c+ e, b+ c+ d, b+ c+ e} ∩ Z = ∅ (3.14)

or equivalently

{α, β, α− γ, β − γ, α− γ′, β − γ′, α− γ − γ′, β − γ − γ′} ∩ Z = ∅. (3.15)

Note that Theorem 1.5 says that under the condition (3.14) the differential equa-
tion du

dx =
(
A1

x + A2

x−y + A3

x−1

)
u is irreducible if and only if a /∈ Z.

3.5. Rank 5 with 6 parameters

I5 41, 32, 311, 311, J5 41, 41, 221, 221: (16 · 24)
41, 41, 221, 221 → F1 : 21, 21, 021, 021
41, 32, 311, 311 → H2 : 11, 02, 011, 011
41, 41, 221, 221
= 10, 10, 001, 010⊕ 31, 31, 220, 211 (4)
= 20, 11, 110, 110⊕ 21, 30, 111, 111 (2)
= 2(10, 10, 100, 100)⊕ 21, 21, 021, 021 (4)

t∞ t0 ty t1 tx idx
t∞ 311 311 221 221 −10
t0 311 32 311 41 2
ty 311 32 311 41 2
t1 221 311 311 221 −10
tx 221 41 41 221 2

3.6. Rank 5 with 5 parameters

t∞ t0 ty t1 tx idx
t∞ 311 32 2111 32 −6
t0 311 32 2111 32 −6
ty 32 32 221 41 2
t1 2111 2111 221 221 −18
tx 32 32 41 221 2

41, 32, 32, 221 : (17 · 23)
→ 31, 22, 22, 220 F2 : 31, 22, 31, 121
F1 : 21, 12, 12, 021
= 10, 10, 10, 001⊕ 31, 22, 22, 220 (1)
= 10, 01, 10, 010⊕ 31, 31, 22, 211 (4)
= 20, 11, 11, 101⊕ 21, 21, 21, 120 (2)
= 2(10, 10, 10, 100)⊕ 21, 12, 12, 021 (2)
= 2(20, 11, 11, 110)⊕ 01, 10, 10, 001 (1)
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3.7. Rank 5 with 4 parameters

P4,5 32, 32, 32, 32 : (18 · 22)
→ F4 : 22, 22, 22, 31 F1 : 12, 12, 12, 12

= 10, 10, 10, 01⊕ 22, 22, 22, 31 (4)
= 21, 21, 21, 12⊕ 11, 11, 11, 20 (4)
= 2(10, 10, 10, 10)⊕ 12, 12, 12, 12 (1)
= 2(21, 21, 21, 21)⊕−(10, 10, 10, 10) (1)

t∞ t0 ty t1 tx idx
t∞ 221 221 211 32 −10
t0 221 221 221 32 −10
ty 221 221 221 33 −10
t1 221 221 221 32 −10
tx 32 32 32 32 2

The last one is of Type 3 and then 10, 10, 10, 10 appears in the preceding decom-
position (cf. Proposition 2.5 iii)).
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